Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach
The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and mor...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2021-08, Vol.145 (4), p.1769-1777 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1777 |
---|---|
container_issue | 4 |
container_start_page | 1769 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 145 |
creator | Olumegbon, Ismail Adewale Alade, Ibrahim Olanrewaju Sahaluddin, Mirza Oyedeji, Mojeed Opeyemi Sa’ad, Aliyu Umar |
description | The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and more convenient approach. This study focuses on creating a machine learning model for the viscosity of different carbon nanomaterials dispersed in diesel oil. The nanomaterials considered here include multi-walled carbon nanotubes, graphene nanoplatelets, and their hybrid combinations. A support vector regression-based model was developed and validated using 120 experimental data points in the temperature range 5–100 °C. The model inputs are the nanoparticle mass fraction, the fluid temperature, and the viscosity of the diesel oil. The developed model yields very good predictive performance on the training and testing datasets. The correlation coefficient and the root mean square error were 99.98% and 0.0076 Pa s, respectively, for the training dataset, and 99.99% and 0.0026 Pa s for the testing dataset. These results indicate that the developed model is extremely accurate for predicting the viscosity of carbon-based nanomaterials in a diesel oil medium, and it was found to outclass all existing models. This model could therefore be extremely useful in the design of heat transfer applications. |
doi_str_mv | 10.1007/s10973-020-10491-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557851252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557851252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f53f9d0551e103d065553c3f946b6dfcdec3711ac5d71bf93e700eae3c410c53</originalsourceid><addsrcrecordid>eNp9UMtKAzEUHUTB-vgBVwHX0XsnzUzjToovqLjpPmQyd9qUaVKTqdC_N3UEd67uuYfzgFMUNwh3CFDfJwRVCw4lcISpQl6fFBOUsxkvVVmdZiwyrlDCeXGR0gYAlAKcFJv30FLfO79iw5rYl0s2JDccWOiYNbEJnjcmUcu88WFrBorO9Im1Lu0oHnnn80OJehZc_8AM2xq7dp5YTyb6Y67Z7WLI5FVx1mUvXf_ey2L5_LScv_LFx8vb_HHBrUA18E6KTrUgJRKCaKGSUgqbuWnVVG1nW7KiRjRWtjU2nRJUA5AhYacIVorL4naMza2fe0qD3oR99LlRl1LWM4mlLLOqHFU2hpQidXoX3dbEg0bQx0n1OKnOk-qfSXWdTWI0pSz2K4p_0f-4vgEmnnqp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557851252</pqid></control><display><type>article</type><title>Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach</title><source>SpringerLink_现刊</source><creator>Olumegbon, Ismail Adewale ; Alade, Ibrahim Olanrewaju ; Sahaluddin, Mirza ; Oyedeji, Mojeed Opeyemi ; Sa’ad, Aliyu Umar</creator><creatorcontrib>Olumegbon, Ismail Adewale ; Alade, Ibrahim Olanrewaju ; Sahaluddin, Mirza ; Oyedeji, Mojeed Opeyemi ; Sa’ad, Aliyu Umar</creatorcontrib><description>The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and more convenient approach. This study focuses on creating a machine learning model for the viscosity of different carbon nanomaterials dispersed in diesel oil. The nanomaterials considered here include multi-walled carbon nanotubes, graphene nanoplatelets, and their hybrid combinations. A support vector regression-based model was developed and validated using 120 experimental data points in the temperature range 5–100 °C. The model inputs are the nanoparticle mass fraction, the fluid temperature, and the viscosity of the diesel oil. The developed model yields very good predictive performance on the training and testing datasets. The correlation coefficient and the root mean square error were 99.98% and 0.0076 Pa s, respectively, for the training dataset, and 99.99% and 0.0026 Pa s for the testing dataset. These results indicate that the developed model is extremely accurate for predicting the viscosity of carbon-based nanomaterials in a diesel oil medium, and it was found to outclass all existing models. This model could therefore be extremely useful in the design of heat transfer applications.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-10491-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Carbon ; Chemistry ; Chemistry and Materials Science ; Correlation coefficients ; Data points ; Datasets ; Dispersion ; Graphene ; Heat transfer ; Inorganic Chemistry ; Machine learning ; Measurement Science and Instrumentation ; Multi wall carbon nanotubes ; Nanofluids ; Nanomaterials ; Nanoparticles ; Performance prediction ; Physical Chemistry ; Polymer Sciences ; Regression models ; Support vector machines ; Thermophysical properties ; Training ; Viscosity</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-08, Vol.145 (4), p.1769-1777</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2021</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f53f9d0551e103d065553c3f946b6dfcdec3711ac5d71bf93e700eae3c410c53</citedby><cites>FETCH-LOGICAL-c319t-f53f9d0551e103d065553c3f946b6dfcdec3711ac5d71bf93e700eae3c410c53</cites><orcidid>0000-0002-1039-2808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-10491-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-10491-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Olumegbon, Ismail Adewale</creatorcontrib><creatorcontrib>Alade, Ibrahim Olanrewaju</creatorcontrib><creatorcontrib>Sahaluddin, Mirza</creatorcontrib><creatorcontrib>Oyedeji, Mojeed Opeyemi</creatorcontrib><creatorcontrib>Sa’ad, Aliyu Umar</creatorcontrib><title>Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and more convenient approach. This study focuses on creating a machine learning model for the viscosity of different carbon nanomaterials dispersed in diesel oil. The nanomaterials considered here include multi-walled carbon nanotubes, graphene nanoplatelets, and their hybrid combinations. A support vector regression-based model was developed and validated using 120 experimental data points in the temperature range 5–100 °C. The model inputs are the nanoparticle mass fraction, the fluid temperature, and the viscosity of the diesel oil. The developed model yields very good predictive performance on the training and testing datasets. The correlation coefficient and the root mean square error were 99.98% and 0.0076 Pa s, respectively, for the training dataset, and 99.99% and 0.0026 Pa s for the testing dataset. These results indicate that the developed model is extremely accurate for predicting the viscosity of carbon-based nanomaterials in a diesel oil medium, and it was found to outclass all existing models. This model could therefore be extremely useful in the design of heat transfer applications.</description><subject>Analytical Chemistry</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Correlation coefficients</subject><subject>Data points</subject><subject>Datasets</subject><subject>Dispersion</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Performance prediction</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Regression models</subject><subject>Support vector machines</subject><subject>Thermophysical properties</subject><subject>Training</subject><subject>Viscosity</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUHUTB-vgBVwHX0XsnzUzjToovqLjpPmQyd9qUaVKTqdC_N3UEd67uuYfzgFMUNwh3CFDfJwRVCw4lcISpQl6fFBOUsxkvVVmdZiwyrlDCeXGR0gYAlAKcFJv30FLfO79iw5rYl0s2JDccWOiYNbEJnjcmUcu88WFrBorO9Im1Lu0oHnnn80OJehZc_8AM2xq7dp5YTyb6Y67Z7WLI5FVx1mUvXf_ey2L5_LScv_LFx8vb_HHBrUA18E6KTrUgJRKCaKGSUgqbuWnVVG1nW7KiRjRWtjU2nRJUA5AhYacIVorL4naMza2fe0qD3oR99LlRl1LWM4mlLLOqHFU2hpQidXoX3dbEg0bQx0n1OKnOk-qfSXWdTWI0pSz2K4p_0f-4vgEmnnqp</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Olumegbon, Ismail Adewale</creator><creator>Alade, Ibrahim Olanrewaju</creator><creator>Sahaluddin, Mirza</creator><creator>Oyedeji, Mojeed Opeyemi</creator><creator>Sa’ad, Aliyu Umar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1039-2808</orcidid></search><sort><creationdate>20210801</creationdate><title>Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach</title><author>Olumegbon, Ismail Adewale ; Alade, Ibrahim Olanrewaju ; Sahaluddin, Mirza ; Oyedeji, Mojeed Opeyemi ; Sa’ad, Aliyu Umar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f53f9d0551e103d065553c3f946b6dfcdec3711ac5d71bf93e700eae3c410c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Chemistry</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Correlation coefficients</topic><topic>Data points</topic><topic>Datasets</topic><topic>Dispersion</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Performance prediction</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Regression models</topic><topic>Support vector machines</topic><topic>Thermophysical properties</topic><topic>Training</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olumegbon, Ismail Adewale</creatorcontrib><creatorcontrib>Alade, Ibrahim Olanrewaju</creatorcontrib><creatorcontrib>Sahaluddin, Mirza</creatorcontrib><creatorcontrib>Oyedeji, Mojeed Opeyemi</creatorcontrib><creatorcontrib>Sa’ad, Aliyu Umar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olumegbon, Ismail Adewale</au><au>Alade, Ibrahim Olanrewaju</au><au>Sahaluddin, Mirza</au><au>Oyedeji, Mojeed Opeyemi</au><au>Sa’ad, Aliyu Umar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>145</volume><issue>4</issue><spage>1769</spage><epage>1777</epage><pages>1769-1777</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and more convenient approach. This study focuses on creating a machine learning model for the viscosity of different carbon nanomaterials dispersed in diesel oil. The nanomaterials considered here include multi-walled carbon nanotubes, graphene nanoplatelets, and their hybrid combinations. A support vector regression-based model was developed and validated using 120 experimental data points in the temperature range 5–100 °C. The model inputs are the nanoparticle mass fraction, the fluid temperature, and the viscosity of the diesel oil. The developed model yields very good predictive performance on the training and testing datasets. The correlation coefficient and the root mean square error were 99.98% and 0.0076 Pa s, respectively, for the training dataset, and 99.99% and 0.0026 Pa s for the testing dataset. These results indicate that the developed model is extremely accurate for predicting the viscosity of carbon-based nanomaterials in a diesel oil medium, and it was found to outclass all existing models. This model could therefore be extremely useful in the design of heat transfer applications.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-10491-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1039-2808</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2021-08, Vol.145 (4), p.1769-1777 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2557851252 |
source | SpringerLink_现刊 |
subjects | Analytical Chemistry Carbon Chemistry Chemistry and Materials Science Correlation coefficients Data points Datasets Dispersion Graphene Heat transfer Inorganic Chemistry Machine learning Measurement Science and Instrumentation Multi wall carbon nanotubes Nanofluids Nanomaterials Nanoparticles Performance prediction Physical Chemistry Polymer Sciences Regression models Support vector machines Thermophysical properties Training Viscosity |
title | Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20viscosity%20of%20carbon-based%20nanomaterials%20dispersed%20in%20diesel%20oil:%20a%20machine%20learning%20approach&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Olumegbon,%20Ismail%20Adewale&rft.date=2021-08-01&rft.volume=145&rft.issue=4&rft.spage=1769&rft.epage=1777&rft.pages=1769-1777&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-10491-7&rft_dat=%3Cproquest_cross%3E2557851252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557851252&rft_id=info:pmid/&rfr_iscdi=true |