Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach

The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2021-08, Vol.145 (4), p.1769-1777
Hauptverfasser: Olumegbon, Ismail Adewale, Alade, Ibrahim Olanrewaju, Sahaluddin, Mirza, Oyedeji, Mojeed Opeyemi, Sa’ad, Aliyu Umar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1777
container_issue 4
container_start_page 1769
container_title Journal of thermal analysis and calorimetry
container_volume 145
creator Olumegbon, Ismail Adewale
Alade, Ibrahim Olanrewaju
Sahaluddin, Mirza
Oyedeji, Mojeed Opeyemi
Sa’ad, Aliyu Umar
description The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and more convenient approach. This study focuses on creating a machine learning model for the viscosity of different carbon nanomaterials dispersed in diesel oil. The nanomaterials considered here include multi-walled carbon nanotubes, graphene nanoplatelets, and their hybrid combinations. A support vector regression-based model was developed and validated using 120 experimental data points in the temperature range 5–100 °C. The model inputs are the nanoparticle mass fraction, the fluid temperature, and the viscosity of the diesel oil. The developed model yields very good predictive performance on the training and testing datasets. The correlation coefficient and the root mean square error were 99.98% and 0.0076 Pa s, respectively, for the training dataset, and 99.99% and 0.0026 Pa s for the testing dataset. These results indicate that the developed model is extremely accurate for predicting the viscosity of carbon-based nanomaterials in a diesel oil medium, and it was found to outclass all existing models. This model could therefore be extremely useful in the design of heat transfer applications.
doi_str_mv 10.1007/s10973-020-10491-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557851252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557851252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f53f9d0551e103d065553c3f946b6dfcdec3711ac5d71bf93e700eae3c410c53</originalsourceid><addsrcrecordid>eNp9UMtKAzEUHUTB-vgBVwHX0XsnzUzjToovqLjpPmQyd9qUaVKTqdC_N3UEd67uuYfzgFMUNwh3CFDfJwRVCw4lcISpQl6fFBOUsxkvVVmdZiwyrlDCeXGR0gYAlAKcFJv30FLfO79iw5rYl0s2JDccWOiYNbEJnjcmUcu88WFrBorO9Im1Lu0oHnnn80OJehZc_8AM2xq7dp5YTyb6Y67Z7WLI5FVx1mUvXf_ey2L5_LScv_LFx8vb_HHBrUA18E6KTrUgJRKCaKGSUgqbuWnVVG1nW7KiRjRWtjU2nRJUA5AhYacIVorL4naMza2fe0qD3oR99LlRl1LWM4mlLLOqHFU2hpQidXoX3dbEg0bQx0n1OKnOk-qfSXWdTWI0pSz2K4p_0f-4vgEmnnqp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557851252</pqid></control><display><type>article</type><title>Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach</title><source>SpringerLink_现刊</source><creator>Olumegbon, Ismail Adewale ; Alade, Ibrahim Olanrewaju ; Sahaluddin, Mirza ; Oyedeji, Mojeed Opeyemi ; Sa’ad, Aliyu Umar</creator><creatorcontrib>Olumegbon, Ismail Adewale ; Alade, Ibrahim Olanrewaju ; Sahaluddin, Mirza ; Oyedeji, Mojeed Opeyemi ; Sa’ad, Aliyu Umar</creatorcontrib><description>The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and more convenient approach. This study focuses on creating a machine learning model for the viscosity of different carbon nanomaterials dispersed in diesel oil. The nanomaterials considered here include multi-walled carbon nanotubes, graphene nanoplatelets, and their hybrid combinations. A support vector regression-based model was developed and validated using 120 experimental data points in the temperature range 5–100 °C. The model inputs are the nanoparticle mass fraction, the fluid temperature, and the viscosity of the diesel oil. The developed model yields very good predictive performance on the training and testing datasets. The correlation coefficient and the root mean square error were 99.98% and 0.0076 Pa s, respectively, for the training dataset, and 99.99% and 0.0026 Pa s for the testing dataset. These results indicate that the developed model is extremely accurate for predicting the viscosity of carbon-based nanomaterials in a diesel oil medium, and it was found to outclass all existing models. This model could therefore be extremely useful in the design of heat transfer applications.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-10491-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Carbon ; Chemistry ; Chemistry and Materials Science ; Correlation coefficients ; Data points ; Datasets ; Dispersion ; Graphene ; Heat transfer ; Inorganic Chemistry ; Machine learning ; Measurement Science and Instrumentation ; Multi wall carbon nanotubes ; Nanofluids ; Nanomaterials ; Nanoparticles ; Performance prediction ; Physical Chemistry ; Polymer Sciences ; Regression models ; Support vector machines ; Thermophysical properties ; Training ; Viscosity</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-08, Vol.145 (4), p.1769-1777</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2021</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f53f9d0551e103d065553c3f946b6dfcdec3711ac5d71bf93e700eae3c410c53</citedby><cites>FETCH-LOGICAL-c319t-f53f9d0551e103d065553c3f946b6dfcdec3711ac5d71bf93e700eae3c410c53</cites><orcidid>0000-0002-1039-2808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-10491-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-10491-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Olumegbon, Ismail Adewale</creatorcontrib><creatorcontrib>Alade, Ibrahim Olanrewaju</creatorcontrib><creatorcontrib>Sahaluddin, Mirza</creatorcontrib><creatorcontrib>Oyedeji, Mojeed Opeyemi</creatorcontrib><creatorcontrib>Sa’ad, Aliyu Umar</creatorcontrib><title>Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and more convenient approach. This study focuses on creating a machine learning model for the viscosity of different carbon nanomaterials dispersed in diesel oil. The nanomaterials considered here include multi-walled carbon nanotubes, graphene nanoplatelets, and their hybrid combinations. A support vector regression-based model was developed and validated using 120 experimental data points in the temperature range 5–100 °C. The model inputs are the nanoparticle mass fraction, the fluid temperature, and the viscosity of the diesel oil. The developed model yields very good predictive performance on the training and testing datasets. The correlation coefficient and the root mean square error were 99.98% and 0.0076 Pa s, respectively, for the training dataset, and 99.99% and 0.0026 Pa s for the testing dataset. These results indicate that the developed model is extremely accurate for predicting the viscosity of carbon-based nanomaterials in a diesel oil medium, and it was found to outclass all existing models. This model could therefore be extremely useful in the design of heat transfer applications.</description><subject>Analytical Chemistry</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Correlation coefficients</subject><subject>Data points</subject><subject>Datasets</subject><subject>Dispersion</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Performance prediction</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Regression models</subject><subject>Support vector machines</subject><subject>Thermophysical properties</subject><subject>Training</subject><subject>Viscosity</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUHUTB-vgBVwHX0XsnzUzjToovqLjpPmQyd9qUaVKTqdC_N3UEd67uuYfzgFMUNwh3CFDfJwRVCw4lcISpQl6fFBOUsxkvVVmdZiwyrlDCeXGR0gYAlAKcFJv30FLfO79iw5rYl0s2JDccWOiYNbEJnjcmUcu88WFrBorO9Im1Lu0oHnnn80OJehZc_8AM2xq7dp5YTyb6Y67Z7WLI5FVx1mUvXf_ey2L5_LScv_LFx8vb_HHBrUA18E6KTrUgJRKCaKGSUgqbuWnVVG1nW7KiRjRWtjU2nRJUA5AhYacIVorL4naMza2fe0qD3oR99LlRl1LWM4mlLLOqHFU2hpQidXoX3dbEg0bQx0n1OKnOk-qfSXWdTWI0pSz2K4p_0f-4vgEmnnqp</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Olumegbon, Ismail Adewale</creator><creator>Alade, Ibrahim Olanrewaju</creator><creator>Sahaluddin, Mirza</creator><creator>Oyedeji, Mojeed Opeyemi</creator><creator>Sa’ad, Aliyu Umar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1039-2808</orcidid></search><sort><creationdate>20210801</creationdate><title>Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach</title><author>Olumegbon, Ismail Adewale ; Alade, Ibrahim Olanrewaju ; Sahaluddin, Mirza ; Oyedeji, Mojeed Opeyemi ; Sa’ad, Aliyu Umar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f53f9d0551e103d065553c3f946b6dfcdec3711ac5d71bf93e700eae3c410c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Chemistry</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Correlation coefficients</topic><topic>Data points</topic><topic>Datasets</topic><topic>Dispersion</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Performance prediction</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Regression models</topic><topic>Support vector machines</topic><topic>Thermophysical properties</topic><topic>Training</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olumegbon, Ismail Adewale</creatorcontrib><creatorcontrib>Alade, Ibrahim Olanrewaju</creatorcontrib><creatorcontrib>Sahaluddin, Mirza</creatorcontrib><creatorcontrib>Oyedeji, Mojeed Opeyemi</creatorcontrib><creatorcontrib>Sa’ad, Aliyu Umar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olumegbon, Ismail Adewale</au><au>Alade, Ibrahim Olanrewaju</au><au>Sahaluddin, Mirza</au><au>Oyedeji, Mojeed Opeyemi</au><au>Sa’ad, Aliyu Umar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>145</volume><issue>4</issue><spage>1769</spage><epage>1777</epage><pages>1769-1777</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The viscosity of a nanofluid is one of its fundamental thermophysical properties, and it is an important consideration in heat transfer applications. Although the viscosity can be reliably obtained from experimental measurements, the development of models to predict the viscosity is a faster and more convenient approach. This study focuses on creating a machine learning model for the viscosity of different carbon nanomaterials dispersed in diesel oil. The nanomaterials considered here include multi-walled carbon nanotubes, graphene nanoplatelets, and their hybrid combinations. A support vector regression-based model was developed and validated using 120 experimental data points in the temperature range 5–100 °C. The model inputs are the nanoparticle mass fraction, the fluid temperature, and the viscosity of the diesel oil. The developed model yields very good predictive performance on the training and testing datasets. The correlation coefficient and the root mean square error were 99.98% and 0.0076 Pa s, respectively, for the training dataset, and 99.99% and 0.0026 Pa s for the testing dataset. These results indicate that the developed model is extremely accurate for predicting the viscosity of carbon-based nanomaterials in a diesel oil medium, and it was found to outclass all existing models. This model could therefore be extremely useful in the design of heat transfer applications.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-10491-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1039-2808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2021-08, Vol.145 (4), p.1769-1777
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2557851252
source SpringerLink_现刊
subjects Analytical Chemistry
Carbon
Chemistry
Chemistry and Materials Science
Correlation coefficients
Data points
Datasets
Dispersion
Graphene
Heat transfer
Inorganic Chemistry
Machine learning
Measurement Science and Instrumentation
Multi wall carbon nanotubes
Nanofluids
Nanomaterials
Nanoparticles
Performance prediction
Physical Chemistry
Polymer Sciences
Regression models
Support vector machines
Thermophysical properties
Training
Viscosity
title Modelling the viscosity of carbon-based nanomaterials dispersed in diesel oil: a machine learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20viscosity%20of%20carbon-based%20nanomaterials%20dispersed%20in%20diesel%20oil:%20a%20machine%20learning%20approach&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Olumegbon,%20Ismail%20Adewale&rft.date=2021-08-01&rft.volume=145&rft.issue=4&rft.spage=1769&rft.epage=1777&rft.pages=1769-1777&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-10491-7&rft_dat=%3Cproquest_cross%3E2557851252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557851252&rft_id=info:pmid/&rfr_iscdi=true