The direct scattering problem for penetrable obstacles included in a cavity
We consider the problem of interior scattering from a point source for a bounded domain D containing two penetrable scatterers Ω 1 and Ω 2 in R 2 . The integral representation for a solution is reconstructed in the form of special combined potentials. The density functions included in the potentials...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2021-06, Vol.52 (2), p.313-322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 2 |
container_start_page | 313 |
container_title | Indian journal of pure and applied mathematics |
container_volume | 52 |
creator | Zhu, Xianghe Peng, Chaoquan Guo, Jun |
description | We consider the problem of interior scattering from a point source for a bounded domain
D
containing two penetrable scatterers
Ω
1
and
Ω
2
in
R
2
. The integral representation for a solution is reconstructed in the form of special combined potentials. The density functions included in the potentials satisfy the uniquely solvable Riesz-Fredholm integral equation. Then we obtain the existence and uniqueness of the solution for the direct scattering problem. |
doi_str_mv | 10.1007/s13226-021-00141-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557850904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557850904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-18794b00d8acf4813f9b9e0f429625a38cafd999db7fa591834953b5b7029773</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0jTJURb_4YKXvYc0TbRLt61JVthvb9YK3jzNG3jvzfBD6JrCLQWQd4lyxmoCjBIAWlEiTtACtBREVrU4LRqoJkIodY4uUtoC1By0XqDXzYfHbRe9yzg5m7OP3fCOpzg2vd_hMEY8-cHnaMuOxyZl63qfcDe4ft_6tghssbNfXT5corNg--SvfucSbR4fNqtnsn57elndr4ljAJlQJXXVALTKulApyoNutIdQMV0zYblyNrRa67aRwQpNFa-04I1oJDAtJV-im7m2PPm59ymb7biPQ7lomBBSCdBQFRebXS6OKUUfzBS7nY0HQ8EcmZmZmSnMzA8zI0qIz6E0HTH4-Ff9T-obw9huMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557850904</pqid></control><display><type>article</type><title>The direct scattering problem for penetrable obstacles included in a cavity</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Xianghe ; Peng, Chaoquan ; Guo, Jun</creator><creatorcontrib>Zhu, Xianghe ; Peng, Chaoquan ; Guo, Jun</creatorcontrib><description>We consider the problem of interior scattering from a point source for a bounded domain
D
containing two penetrable scatterers
Ω
1
and
Ω
2
in
R
2
. The integral representation for a solution is reconstructed in the form of special combined potentials. The density functions included in the potentials satisfy the uniquely solvable Riesz-Fredholm integral equation. Then we obtain the existence and uniqueness of the solution for the direct scattering problem.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-021-00141-5</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Fredholm equations ; Integral equations ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Original Research ; Scattering</subject><ispartof>Indian journal of pure and applied mathematics, 2021-06, Vol.52 (2), p.313-322</ispartof><rights>The Indian National Science Academy 2021</rights><rights>The Indian National Science Academy 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-18794b00d8acf4813f9b9e0f429625a38cafd999db7fa591834953b5b7029773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-021-00141-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-021-00141-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Xianghe</creatorcontrib><creatorcontrib>Peng, Chaoquan</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><title>The direct scattering problem for penetrable obstacles included in a cavity</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>We consider the problem of interior scattering from a point source for a bounded domain
D
containing two penetrable scatterers
Ω
1
and
Ω
2
in
R
2
. The integral representation for a solution is reconstructed in the form of special combined potentials. The density functions included in the potentials satisfy the uniquely solvable Riesz-Fredholm integral equation. Then we obtain the existence and uniqueness of the solution for the direct scattering problem.</description><subject>Applications of Mathematics</subject><subject>Fredholm equations</subject><subject>Integral equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Original Research</subject><subject>Scattering</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0jTJURb_4YKXvYc0TbRLt61JVthvb9YK3jzNG3jvzfBD6JrCLQWQd4lyxmoCjBIAWlEiTtACtBREVrU4LRqoJkIodY4uUtoC1By0XqDXzYfHbRe9yzg5m7OP3fCOpzg2vd_hMEY8-cHnaMuOxyZl63qfcDe4ft_6tghssbNfXT5corNg--SvfucSbR4fNqtnsn57elndr4ljAJlQJXXVALTKulApyoNutIdQMV0zYblyNrRa67aRwQpNFa-04I1oJDAtJV-im7m2PPm59ymb7biPQ7lomBBSCdBQFRebXS6OKUUfzBS7nY0HQ8EcmZmZmSnMzA8zI0qIz6E0HTH4-Ff9T-obw9huMg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhu, Xianghe</creator><creator>Peng, Chaoquan</creator><creator>Guo, Jun</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>The direct scattering problem for penetrable obstacles included in a cavity</title><author>Zhu, Xianghe ; Peng, Chaoquan ; Guo, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-18794b00d8acf4813f9b9e0f429625a38cafd999db7fa591834953b5b7029773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Fredholm equations</topic><topic>Integral equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Original Research</topic><topic>Scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xianghe</creatorcontrib><creatorcontrib>Peng, Chaoquan</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xianghe</au><au>Peng, Chaoquan</au><au>Guo, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The direct scattering problem for penetrable obstacles included in a cavity</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>52</volume><issue>2</issue><spage>313</spage><epage>322</epage><pages>313-322</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>We consider the problem of interior scattering from a point source for a bounded domain
D
containing two penetrable scatterers
Ω
1
and
Ω
2
in
R
2
. The integral representation for a solution is reconstructed in the form of special combined potentials. The density functions included in the potentials satisfy the uniquely solvable Riesz-Fredholm integral equation. Then we obtain the existence and uniqueness of the solution for the direct scattering problem.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-021-00141-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-5588 |
ispartof | Indian journal of pure and applied mathematics, 2021-06, Vol.52 (2), p.313-322 |
issn | 0019-5588 0975-7465 |
language | eng |
recordid | cdi_proquest_journals_2557850904 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Fredholm equations Integral equations Mathematics Mathematics and Statistics Numerical Analysis Original Research Scattering |
title | The direct scattering problem for penetrable obstacles included in a cavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20direct%20scattering%20problem%20for%20penetrable%20obstacles%20included%20in%20a%20cavity&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Zhu,%20Xianghe&rft.date=2021-06-01&rft.volume=52&rft.issue=2&rft.spage=313&rft.epage=322&rft.pages=313-322&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-021-00141-5&rft_dat=%3Cproquest_cross%3E2557850904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557850904&rft_id=info:pmid/&rfr_iscdi=true |