Uncertainty Analysis on Process Organized Emission Inventory in Petrochemical Enterprises of Hainan Province

The study qualitatively and quantitatively evaluated the uncertainty of the emission inventory of SO2, NOx, particulate matter (PM) and non-methane volatile organic compounds (NMVOCs) based on the measurement method in the process of organized sources in eight typical petroleum refining enterprises...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2019-07, Vol.295 (5), p.52052
Hauptverfasser: Xie, Donghai, Zhang, Xiaxia, Han, Qi, He, Qingyang, Meng, Xinxin, Li, Feng, Zhou, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 52052
container_title IOP conference series. Earth and environmental science
container_volume 295
creator Xie, Donghai
Zhang, Xiaxia
Han, Qi
He, Qingyang
Meng, Xinxin
Li, Feng
Zhou, Kang
description The study qualitatively and quantitatively evaluated the uncertainty of the emission inventory of SO2, NOx, particulate matter (PM) and non-methane volatile organic compounds (NMVOCs) based on the measurement method in the process of organized sources in eight typical petroleum refining enterprises in Hainan Province in 2017. According to the TRACE-P inventory grading, the activity level data uncertainty was between I and II, and the emission factor rating was roughly C-level. The qualitative assessment of the emission inventory is "good". The Monte Carlo simulation model was used to quantitatively evaluate the uncertainty. The results show that the uncertainties in emission inventory of SO2, NOx, PM and NMVOCs are ±2.9%, ±6.3%, ±7.6% and ±13.7%, respectively, with the highest uncertainty in NMVOCs emissions. The study on emission inventory uncertainty will help decision makers to scientifically formulate air pollutant control strategies for the accessibility of pollutant emission reduction targets of petrochemical enterprises and guide the improvement of emission inventory and data collection.
doi_str_mv 10.1088/1755-1315/295/5/052052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557846399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557846399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-8742a23d5bcf57d7e477b5511e6b202ad2b2ec9945f9e88ccd632e6d6bf08ff33</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKevIAVvvKlN0iZpL8eobjCYoLsOaZpoRpfWpBPq05tZmQiCEDiB850vOT8A1wjeIZjnCWKExChFJMEFSUgCCQ7nBEyOjdPjHbJzcOH9FkLKsrSYgGZjpXK9MLYfopkVzeCNj1obPbpWKu-jtXsR1nyoOip3xnsTWkv7rmzfuiEygVN9IF_VzkjRRKXtleuc8SpIdLQIXvHlejfhnUtwpkXj1dV3nYLNffk8X8Sr9cNyPlvFMqOwj3OWYYHTmlRSE1YzlTFWEYKQohWGWNS4wkoWRUZ0ofJcypqmWNGaVhrmWqfpFNyM3s61b3vle75t9y4s5zkmhOUZTYsiUHSkpGu9d0rz8PGdcANHkB-S5YfQ-CFAHpLlhI_JhsHbcdC03Y-5LJ9-YbyrdUDxH-g__k8JCYmG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557846399</pqid></control><display><type>article</type><title>Uncertainty Analysis on Process Organized Emission Inventory in Petrochemical Enterprises of Hainan Province</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Xie, Donghai ; Zhang, Xiaxia ; Han, Qi ; He, Qingyang ; Meng, Xinxin ; Li, Feng ; Zhou, Kang</creator><creatorcontrib>Xie, Donghai ; Zhang, Xiaxia ; Han, Qi ; He, Qingyang ; Meng, Xinxin ; Li, Feng ; Zhou, Kang</creatorcontrib><description>The study qualitatively and quantitatively evaluated the uncertainty of the emission inventory of SO2, NOx, particulate matter (PM) and non-methane volatile organic compounds (NMVOCs) based on the measurement method in the process of organized sources in eight typical petroleum refining enterprises in Hainan Province in 2017. According to the TRACE-P inventory grading, the activity level data uncertainty was between I and II, and the emission factor rating was roughly C-level. The qualitative assessment of the emission inventory is "good". The Monte Carlo simulation model was used to quantitatively evaluate the uncertainty. The results show that the uncertainties in emission inventory of SO2, NOx, PM and NMVOCs are ±2.9%, ±6.3%, ±7.6% and ±13.7%, respectively, with the highest uncertainty in NMVOCs emissions. The study on emission inventory uncertainty will help decision makers to scientifically formulate air pollutant control strategies for the accessibility of pollutant emission reduction targets of petrochemical enterprises and guide the improvement of emission inventory and data collection.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/295/5/052052</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air pollution ; Data collection ; Emission analysis ; Emission inventories ; Emissions control ; Evaluation ; Measurement methods ; Monte Carlo simulation ; Nitrogen oxides ; Organic compounds ; Particulate emissions ; Particulate matter ; Petrochemicals ; Petroleum refining ; Pollutants ; Pollution control ; Sulfur dioxide ; Uncertainty analysis ; VOCs ; Volatile organic compounds</subject><ispartof>IOP conference series. Earth and environmental science, 2019-07, Vol.295 (5), p.52052</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-8742a23d5bcf57d7e477b5511e6b202ad2b2ec9945f9e88ccd632e6d6bf08ff33</citedby><cites>FETCH-LOGICAL-c460t-8742a23d5bcf57d7e477b5511e6b202ad2b2ec9945f9e88ccd632e6d6bf08ff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/295/5/052052/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Xie, Donghai</creatorcontrib><creatorcontrib>Zhang, Xiaxia</creatorcontrib><creatorcontrib>Han, Qi</creatorcontrib><creatorcontrib>He, Qingyang</creatorcontrib><creatorcontrib>Meng, Xinxin</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Zhou, Kang</creatorcontrib><title>Uncertainty Analysis on Process Organized Emission Inventory in Petrochemical Enterprises of Hainan Province</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>The study qualitatively and quantitatively evaluated the uncertainty of the emission inventory of SO2, NOx, particulate matter (PM) and non-methane volatile organic compounds (NMVOCs) based on the measurement method in the process of organized sources in eight typical petroleum refining enterprises in Hainan Province in 2017. According to the TRACE-P inventory grading, the activity level data uncertainty was between I and II, and the emission factor rating was roughly C-level. The qualitative assessment of the emission inventory is "good". The Monte Carlo simulation model was used to quantitatively evaluate the uncertainty. The results show that the uncertainties in emission inventory of SO2, NOx, PM and NMVOCs are ±2.9%, ±6.3%, ±7.6% and ±13.7%, respectively, with the highest uncertainty in NMVOCs emissions. The study on emission inventory uncertainty will help decision makers to scientifically formulate air pollutant control strategies for the accessibility of pollutant emission reduction targets of petrochemical enterprises and guide the improvement of emission inventory and data collection.</description><subject>Air pollution</subject><subject>Data collection</subject><subject>Emission analysis</subject><subject>Emission inventories</subject><subject>Emissions control</subject><subject>Evaluation</subject><subject>Measurement methods</subject><subject>Monte Carlo simulation</subject><subject>Nitrogen oxides</subject><subject>Organic compounds</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Petrochemicals</subject><subject>Petroleum refining</subject><subject>Pollutants</subject><subject>Pollution control</subject><subject>Sulfur dioxide</subject><subject>Uncertainty analysis</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkNFKwzAUhoMoOKevIAVvvKlN0iZpL8eobjCYoLsOaZpoRpfWpBPq05tZmQiCEDiB850vOT8A1wjeIZjnCWKExChFJMEFSUgCCQ7nBEyOjdPjHbJzcOH9FkLKsrSYgGZjpXK9MLYfopkVzeCNj1obPbpWKu-jtXsR1nyoOip3xnsTWkv7rmzfuiEygVN9IF_VzkjRRKXtleuc8SpIdLQIXvHlejfhnUtwpkXj1dV3nYLNffk8X8Sr9cNyPlvFMqOwj3OWYYHTmlRSE1YzlTFWEYKQohWGWNS4wkoWRUZ0ofJcypqmWNGaVhrmWqfpFNyM3s61b3vle75t9y4s5zkmhOUZTYsiUHSkpGu9d0rz8PGdcANHkB-S5YfQ-CFAHpLlhI_JhsHbcdC03Y-5LJ9-YbyrdUDxH-g__k8JCYmG</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xie, Donghai</creator><creator>Zhang, Xiaxia</creator><creator>Han, Qi</creator><creator>He, Qingyang</creator><creator>Meng, Xinxin</creator><creator>Li, Feng</creator><creator>Zhou, Kang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20190701</creationdate><title>Uncertainty Analysis on Process Organized Emission Inventory in Petrochemical Enterprises of Hainan Province</title><author>Xie, Donghai ; Zhang, Xiaxia ; Han, Qi ; He, Qingyang ; Meng, Xinxin ; Li, Feng ; Zhou, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-8742a23d5bcf57d7e477b5511e6b202ad2b2ec9945f9e88ccd632e6d6bf08ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air pollution</topic><topic>Data collection</topic><topic>Emission analysis</topic><topic>Emission inventories</topic><topic>Emissions control</topic><topic>Evaluation</topic><topic>Measurement methods</topic><topic>Monte Carlo simulation</topic><topic>Nitrogen oxides</topic><topic>Organic compounds</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Petrochemicals</topic><topic>Petroleum refining</topic><topic>Pollutants</topic><topic>Pollution control</topic><topic>Sulfur dioxide</topic><topic>Uncertainty analysis</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Donghai</creatorcontrib><creatorcontrib>Zhang, Xiaxia</creatorcontrib><creatorcontrib>Han, Qi</creatorcontrib><creatorcontrib>He, Qingyang</creatorcontrib><creatorcontrib>Meng, Xinxin</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Zhou, Kang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Donghai</au><au>Zhang, Xiaxia</au><au>Han, Qi</au><au>He, Qingyang</au><au>Meng, Xinxin</au><au>Li, Feng</au><au>Zhou, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Analysis on Process Organized Emission Inventory in Petrochemical Enterprises of Hainan Province</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>295</volume><issue>5</issue><spage>52052</spage><pages>52052-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The study qualitatively and quantitatively evaluated the uncertainty of the emission inventory of SO2, NOx, particulate matter (PM) and non-methane volatile organic compounds (NMVOCs) based on the measurement method in the process of organized sources in eight typical petroleum refining enterprises in Hainan Province in 2017. According to the TRACE-P inventory grading, the activity level data uncertainty was between I and II, and the emission factor rating was roughly C-level. The qualitative assessment of the emission inventory is "good". The Monte Carlo simulation model was used to quantitatively evaluate the uncertainty. The results show that the uncertainties in emission inventory of SO2, NOx, PM and NMVOCs are ±2.9%, ±6.3%, ±7.6% and ±13.7%, respectively, with the highest uncertainty in NMVOCs emissions. The study on emission inventory uncertainty will help decision makers to scientifically formulate air pollutant control strategies for the accessibility of pollutant emission reduction targets of petrochemical enterprises and guide the improvement of emission inventory and data collection.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/295/5/052052</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2019-07, Vol.295 (5), p.52052
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2557846399
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Air pollution
Data collection
Emission analysis
Emission inventories
Emissions control
Evaluation
Measurement methods
Monte Carlo simulation
Nitrogen oxides
Organic compounds
Particulate emissions
Particulate matter
Petrochemicals
Petroleum refining
Pollutants
Pollution control
Sulfur dioxide
Uncertainty analysis
VOCs
Volatile organic compounds
title Uncertainty Analysis on Process Organized Emission Inventory in Petrochemical Enterprises of Hainan Province
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Analysis%20on%20Process%20Organized%20Emission%20Inventory%20in%20Petrochemical%20Enterprises%20of%20Hainan%20Province&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Xie,%20Donghai&rft.date=2019-07-01&rft.volume=295&rft.issue=5&rft.spage=52052&rft.pages=52052-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/295/5/052052&rft_dat=%3Cproquest_cross%3E2557846399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557846399&rft_id=info:pmid/&rfr_iscdi=true