Drag, diffusion and segregation in inertial granular flows
Inter-species drag forces in granular flows play a central role in setting the speed and extent of segregation, a process that separates grains of different size or density. Here, we study this drag force in detail, using a novel configuration of discrete element simulations that allows us to comple...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-10, Vol.924, Article A3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 924 |
creator | Bancroft, Robbie S.J. Johnson, Chris G. |
description | Inter-species drag forces in granular flows play a central role in setting the speed and extent of segregation, a process that separates grains of different size or density. Here, we study this drag force in detail, using a novel configuration of discrete element simulations that allows us to completely characterise the drag in inertial granular flows by studying it in a uniform environment. By applying opposing forces to grains in monodisperse and size-bidisperse shear flows, we show that the strength of the drag force scales as $I^{-7/4}$, where $I$ is the granular inertial number, and propose a model that explains this scaling by relating the strength of drag to grain velocity fluctuations. These findings suggest that much of the previously observed dependence of the segregation rate on the local shear rate and pressure in dense free-surface flows is due to variation in the strength of the inter-species drag, rather than the strength of forces that drive segregation. |
doi_str_mv | 10.1017/jfm.2021.560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557810988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_560</cupid><sourcerecordid>2557810988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a3bff8eee5d8ab70d8c1705788f4270c437eb6fcfbb88ed00d7e08e1236af81f3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFZv_oCA1ybObD526038hoIXPS-b7ExISZO6myD-exNa8CIMDAPP-w48QlwjJAiobre8SyRITPICTsQCs2IdqyLLT8UCQMoYUcK5uAhhC4AprNVC3D16W68i1zCPoem7yHYuClR7qu0w38085IfGtlHtbTe21kfc9t_hUpyxbQNdHfdSfD4_fTy8xpv3l7eH-01cpRkMsU1LZk1EudO2VOB0hQpypTVnUkGVpYrKgisuS63JAThFoAllWljWyOlS3Bx6977_GikMZtuPvpteGplPPQhrrSdqdaAq34fgic3eNzvrfwyCme2YyY6Z7ZjJzoQnR9zuSt-4mv5a_w38AtqeZvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557810988</pqid></control><display><type>article</type><title>Drag, diffusion and segregation in inertial granular flows</title><source>Cambridge Journals Online</source><creator>Bancroft, Robbie S.J. ; Johnson, Chris G.</creator><creatorcontrib>Bancroft, Robbie S.J. ; Johnson, Chris G.</creatorcontrib><description>Inter-species drag forces in granular flows play a central role in setting the speed and extent of segregation, a process that separates grains of different size or density. Here, we study this drag force in detail, using a novel configuration of discrete element simulations that allows us to completely characterise the drag in inertial granular flows by studying it in a uniform environment. By applying opposing forces to grains in monodisperse and size-bidisperse shear flows, we show that the strength of the drag force scales as $I^{-7/4}$, where $I$ is the granular inertial number, and propose a model that explains this scaling by relating the strength of drag to grain velocity fluctuations. These findings suggest that much of the previously observed dependence of the segregation rate on the local shear rate and pressure in dense free-surface flows is due to variation in the strength of the inter-species drag, rather than the strength of forces that drive segregation.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.560</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dimensional analysis ; Discrete element method ; Drag ; Forces ; Free surfaces ; JFM Papers ; Scaling ; Segregation ; Shear ; Shear flow ; Shear rate ; Simulation ; Strength ; Velocity</subject><ispartof>Journal of fluid mechanics, 2021-10, Vol.924, Article A3</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a3bff8eee5d8ab70d8c1705788f4270c437eb6fcfbb88ed00d7e08e1236af81f3</citedby><cites>FETCH-LOGICAL-c340t-a3bff8eee5d8ab70d8c1705788f4270c437eb6fcfbb88ed00d7e08e1236af81f3</cites><orcidid>0000-0002-2967-7731 ; 0000-0003-2192-3616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021005607/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Bancroft, Robbie S.J.</creatorcontrib><creatorcontrib>Johnson, Chris G.</creatorcontrib><title>Drag, diffusion and segregation in inertial granular flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Inter-species drag forces in granular flows play a central role in setting the speed and extent of segregation, a process that separates grains of different size or density. Here, we study this drag force in detail, using a novel configuration of discrete element simulations that allows us to completely characterise the drag in inertial granular flows by studying it in a uniform environment. By applying opposing forces to grains in monodisperse and size-bidisperse shear flows, we show that the strength of the drag force scales as $I^{-7/4}$, where $I$ is the granular inertial number, and propose a model that explains this scaling by relating the strength of drag to grain velocity fluctuations. These findings suggest that much of the previously observed dependence of the segregation rate on the local shear rate and pressure in dense free-surface flows is due to variation in the strength of the inter-species drag, rather than the strength of forces that drive segregation.</description><subject>Dimensional analysis</subject><subject>Discrete element method</subject><subject>Drag</subject><subject>Forces</subject><subject>Free surfaces</subject><subject>JFM Papers</subject><subject>Scaling</subject><subject>Segregation</subject><subject>Shear</subject><subject>Shear flow</subject><subject>Shear rate</subject><subject>Simulation</subject><subject>Strength</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AQhhdRsFZv_oCA1ybObD526038hoIXPS-b7ExISZO6myD-exNa8CIMDAPP-w48QlwjJAiobre8SyRITPICTsQCs2IdqyLLT8UCQMoYUcK5uAhhC4AprNVC3D16W68i1zCPoem7yHYuClR7qu0w38085IfGtlHtbTe21kfc9t_hUpyxbQNdHfdSfD4_fTy8xpv3l7eH-01cpRkMsU1LZk1EudO2VOB0hQpypTVnUkGVpYrKgisuS63JAThFoAllWljWyOlS3Bx6977_GikMZtuPvpteGplPPQhrrSdqdaAq34fgic3eNzvrfwyCme2YyY6Z7ZjJzoQnR9zuSt-4mv5a_w38AtqeZvY</recordid><startdate>20211010</startdate><enddate>20211010</enddate><creator>Bancroft, Robbie S.J.</creator><creator>Johnson, Chris G.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2967-7731</orcidid><orcidid>https://orcid.org/0000-0003-2192-3616</orcidid></search><sort><creationdate>20211010</creationdate><title>Drag, diffusion and segregation in inertial granular flows</title><author>Bancroft, Robbie S.J. ; Johnson, Chris G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a3bff8eee5d8ab70d8c1705788f4270c437eb6fcfbb88ed00d7e08e1236af81f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dimensional analysis</topic><topic>Discrete element method</topic><topic>Drag</topic><topic>Forces</topic><topic>Free surfaces</topic><topic>JFM Papers</topic><topic>Scaling</topic><topic>Segregation</topic><topic>Shear</topic><topic>Shear flow</topic><topic>Shear rate</topic><topic>Simulation</topic><topic>Strength</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bancroft, Robbie S.J.</creatorcontrib><creatorcontrib>Johnson, Chris G.</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>test</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bancroft, Robbie S.J.</au><au>Johnson, Chris G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drag, diffusion and segregation in inertial granular flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-10-10</date><risdate>2021</risdate><volume>924</volume><artnum>A3</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Inter-species drag forces in granular flows play a central role in setting the speed and extent of segregation, a process that separates grains of different size or density. Here, we study this drag force in detail, using a novel configuration of discrete element simulations that allows us to completely characterise the drag in inertial granular flows by studying it in a uniform environment. By applying opposing forces to grains in monodisperse and size-bidisperse shear flows, we show that the strength of the drag force scales as $I^{-7/4}$, where $I$ is the granular inertial number, and propose a model that explains this scaling by relating the strength of drag to grain velocity fluctuations. These findings suggest that much of the previously observed dependence of the segregation rate on the local shear rate and pressure in dense free-surface flows is due to variation in the strength of the inter-species drag, rather than the strength of forces that drive segregation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.560</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2967-7731</orcidid><orcidid>https://orcid.org/0000-0003-2192-3616</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-10, Vol.924, Article A3 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2557810988 |
source | Cambridge Journals Online |
subjects | Dimensional analysis Discrete element method Drag Forces Free surfaces JFM Papers Scaling Segregation Shear Shear flow Shear rate Simulation Strength Velocity |
title | Drag, diffusion and segregation in inertial granular flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drag,%20diffusion%20and%20segregation%20in%20inertial%20granular%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Bancroft,%20Robbie%20S.J.&rft.date=2021-10-10&rft.volume=924&rft.artnum=A3&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.560&rft_dat=%3Cproquest_cross%3E2557810988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557810988&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_560&rfr_iscdi=true |