On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms
This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive s...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021-09, Vol.116 (5-6), p.1751-1761 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1761 |
---|---|
container_issue | 5-6 |
container_start_page | 1751 |
container_title | International journal of advanced manufacturing technology |
container_volume | 116 |
creator | Cruz, Celso E. Vargas-Arista, B. Gámez-Cuatzin, Hugo Camacho, Diego Canto, Alfredo Villareal-Colin, Ricardo Castillo-Garcia, Andres Valdez-Aguayo, Antonio Rice-Ramirez, José Luis Guzmán, Isidro |
description | This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive strength for the sand hardener resin mix (3.5% resin and 8.5% hardener) of 9.94 ± 0.18 kN. The visual inspection did not reveal cracks, porosity, misruns, or other superficial defects that could affect the propeller’s integrity. The comparison between the three-dimensional model and measured blades was 12 to 16% (including shrinkage of 2 to 5%). Also, the as-cast propeller showed variations ranging from 6.66 to 8.30 mm in comparison to the desired thickness of the finished parts. The mechanical properties, microstructure, and chemical analysis results indicated that the molten alloy was Ni-Al bronze within C95800 specification. |
doi_str_mv | 10.1007/s00170-021-07492-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557672690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557672690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-cee5e2c9e2afd0ab69322b594eb1ab4b29e3fda3c2f00863262f717a107f25893</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Fk0ibNURa_YGEvejWk7WQ_6MeatML-e7NbwZunYeB53xkeQm4Fvxec64fIudCccRCM68wA02dkJjIpmeQiPyczDqpgUqviklzFuEu4EqqYkc9VR4cN0tZ1o3fVMAakvaed-3YN3Yd-j02DIdLyQMe47dY0YuPZxoUau9Pqupq2fVPHVFHjkQt92Q_birrQxmty4V0T8eZ3zsnH89P74pUtVy9vi8clqyAzA6sQc4TKIDhfc1cqIwHK3GRYCldmJRiUvnayAs95oSQo8FpoJ7j2kBdGzsnd1Jte_hoxDnbXj6FLJy3kuVYalOGJgomqQh9jQG_3Ydu6cLCC26NHO3m0yaM9ebQ6heQUignu1hj-qv9J_QCsonY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557672690</pqid></control><display><type>article</type><title>On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cruz, Celso E. ; Vargas-Arista, B. ; Gámez-Cuatzin, Hugo ; Camacho, Diego ; Canto, Alfredo ; Villareal-Colin, Ricardo ; Castillo-Garcia, Andres ; Valdez-Aguayo, Antonio ; Rice-Ramirez, José Luis ; Guzmán, Isidro</creator><creatorcontrib>Cruz, Celso E. ; Vargas-Arista, B. ; Gámez-Cuatzin, Hugo ; Camacho, Diego ; Canto, Alfredo ; Villareal-Colin, Ricardo ; Castillo-Garcia, Andres ; Valdez-Aguayo, Antonio ; Rice-Ramirez, José Luis ; Guzmán, Isidro</creatorcontrib><description>This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive strength for the sand hardener resin mix (3.5% resin and 8.5% hardener) of 9.94 ± 0.18 kN. The visual inspection did not reveal cracks, porosity, misruns, or other superficial defects that could affect the propeller’s integrity. The comparison between the three-dimensional model and measured blades was 12 to 16% (including shrinkage of 2 to 5%). Also, the as-cast propeller showed variations ranging from 6.66 to 8.30 mm in comparison to the desired thickness of the finished parts. The mechanical properties, microstructure, and chemical analysis results indicated that the molten alloy was Ni-Al bronze within C95800 specification.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07492-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Air hardening ; Aluminum bronzes ; CAD ; CAE) and Design ; Chemical analysis ; Composite materials ; Compressive strength ; Compressor blades ; Computer aided design ; Computer-Aided Engineering (CAD ; Design ; Engineering ; Flaw detection ; Industrial and Production Engineering ; Inspection ; Liquid metals ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Media Management ; Nickel ; Original Article ; Propellers ; Resins ; Robot arms ; Robotics ; Sand molds ; Thickness ; Three dimensional models</subject><ispartof>International journal of advanced manufacturing technology, 2021-09, Vol.116 (5-6), p.1751-1761</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-cee5e2c9e2afd0ab69322b594eb1ab4b29e3fda3c2f00863262f717a107f25893</citedby><cites>FETCH-LOGICAL-c249t-cee5e2c9e2afd0ab69322b594eb1ab4b29e3fda3c2f00863262f717a107f25893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07492-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07492-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cruz, Celso E.</creatorcontrib><creatorcontrib>Vargas-Arista, B.</creatorcontrib><creatorcontrib>Gámez-Cuatzin, Hugo</creatorcontrib><creatorcontrib>Camacho, Diego</creatorcontrib><creatorcontrib>Canto, Alfredo</creatorcontrib><creatorcontrib>Villareal-Colin, Ricardo</creatorcontrib><creatorcontrib>Castillo-Garcia, Andres</creatorcontrib><creatorcontrib>Valdez-Aguayo, Antonio</creatorcontrib><creatorcontrib>Rice-Ramirez, José Luis</creatorcontrib><creatorcontrib>Guzmán, Isidro</creatorcontrib><title>On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive strength for the sand hardener resin mix (3.5% resin and 8.5% hardener) of 9.94 ± 0.18 kN. The visual inspection did not reveal cracks, porosity, misruns, or other superficial defects that could affect the propeller’s integrity. The comparison between the three-dimensional model and measured blades was 12 to 16% (including shrinkage of 2 to 5%). Also, the as-cast propeller showed variations ranging from 6.66 to 8.30 mm in comparison to the desired thickness of the finished parts. The mechanical properties, microstructure, and chemical analysis results indicated that the molten alloy was Ni-Al bronze within C95800 specification.</description><subject>Advanced manufacturing technologies</subject><subject>Air hardening</subject><subject>Aluminum bronzes</subject><subject>CAD</subject><subject>CAE) and Design</subject><subject>Chemical analysis</subject><subject>Composite materials</subject><subject>Compressive strength</subject><subject>Compressor blades</subject><subject>Computer aided design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design</subject><subject>Engineering</subject><subject>Flaw detection</subject><subject>Industrial and Production Engineering</subject><subject>Inspection</subject><subject>Liquid metals</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Nickel</subject><subject>Original Article</subject><subject>Propellers</subject><subject>Resins</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Sand molds</subject><subject>Thickness</subject><subject>Three dimensional models</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Fk0ibNURa_YGEvejWk7WQ_6MeatML-e7NbwZunYeB53xkeQm4Fvxec64fIudCccRCM68wA02dkJjIpmeQiPyczDqpgUqviklzFuEu4EqqYkc9VR4cN0tZ1o3fVMAakvaed-3YN3Yd-j02DIdLyQMe47dY0YuPZxoUau9Pqupq2fVPHVFHjkQt92Q_birrQxmty4V0T8eZ3zsnH89P74pUtVy9vi8clqyAzA6sQc4TKIDhfc1cqIwHK3GRYCldmJRiUvnayAs95oSQo8FpoJ7j2kBdGzsnd1Jte_hoxDnbXj6FLJy3kuVYalOGJgomqQh9jQG_3Ydu6cLCC26NHO3m0yaM9ebQ6heQUignu1hj-qv9J_QCsonY2</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Cruz, Celso E.</creator><creator>Vargas-Arista, B.</creator><creator>Gámez-Cuatzin, Hugo</creator><creator>Camacho, Diego</creator><creator>Canto, Alfredo</creator><creator>Villareal-Colin, Ricardo</creator><creator>Castillo-Garcia, Andres</creator><creator>Valdez-Aguayo, Antonio</creator><creator>Rice-Ramirez, José Luis</creator><creator>Guzmán, Isidro</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210901</creationdate><title>On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms</title><author>Cruz, Celso E. ; Vargas-Arista, B. ; Gámez-Cuatzin, Hugo ; Camacho, Diego ; Canto, Alfredo ; Villareal-Colin, Ricardo ; Castillo-Garcia, Andres ; Valdez-Aguayo, Antonio ; Rice-Ramirez, José Luis ; Guzmán, Isidro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-cee5e2c9e2afd0ab69322b594eb1ab4b29e3fda3c2f00863262f717a107f25893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced manufacturing technologies</topic><topic>Air hardening</topic><topic>Aluminum bronzes</topic><topic>CAD</topic><topic>CAE) and Design</topic><topic>Chemical analysis</topic><topic>Composite materials</topic><topic>Compressive strength</topic><topic>Compressor blades</topic><topic>Computer aided design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design</topic><topic>Engineering</topic><topic>Flaw detection</topic><topic>Industrial and Production Engineering</topic><topic>Inspection</topic><topic>Liquid metals</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Nickel</topic><topic>Original Article</topic><topic>Propellers</topic><topic>Resins</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Sand molds</topic><topic>Thickness</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz, Celso E.</creatorcontrib><creatorcontrib>Vargas-Arista, B.</creatorcontrib><creatorcontrib>Gámez-Cuatzin, Hugo</creatorcontrib><creatorcontrib>Camacho, Diego</creatorcontrib><creatorcontrib>Canto, Alfredo</creatorcontrib><creatorcontrib>Villareal-Colin, Ricardo</creatorcontrib><creatorcontrib>Castillo-Garcia, Andres</creatorcontrib><creatorcontrib>Valdez-Aguayo, Antonio</creatorcontrib><creatorcontrib>Rice-Ramirez, José Luis</creatorcontrib><creatorcontrib>Guzmán, Isidro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz, Celso E.</au><au>Vargas-Arista, B.</au><au>Gámez-Cuatzin, Hugo</au><au>Camacho, Diego</au><au>Canto, Alfredo</au><au>Villareal-Colin, Ricardo</au><au>Castillo-Garcia, Andres</au><au>Valdez-Aguayo, Antonio</au><au>Rice-Ramirez, José Luis</au><au>Guzmán, Isidro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>116</volume><issue>5-6</issue><spage>1751</spage><epage>1761</epage><pages>1751-1761</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive strength for the sand hardener resin mix (3.5% resin and 8.5% hardener) of 9.94 ± 0.18 kN. The visual inspection did not reveal cracks, porosity, misruns, or other superficial defects that could affect the propeller’s integrity. The comparison between the three-dimensional model and measured blades was 12 to 16% (including shrinkage of 2 to 5%). Also, the as-cast propeller showed variations ranging from 6.66 to 8.30 mm in comparison to the desired thickness of the finished parts. The mechanical properties, microstructure, and chemical analysis results indicated that the molten alloy was Ni-Al bronze within C95800 specification.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07492-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2021-09, Vol.116 (5-6), p.1751-1761 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2557672690 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advanced manufacturing technologies Air hardening Aluminum bronzes CAD CAE) and Design Chemical analysis Composite materials Compressive strength Compressor blades Computer aided design Computer-Aided Engineering (CAD Design Engineering Flaw detection Industrial and Production Engineering Inspection Liquid metals Manufacturing Mechanical Engineering Mechanical properties Media Management Nickel Original Article Propellers Resins Robot arms Robotics Sand molds Thickness Three dimensional models |
title | On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20manufacture%20of%20naval%20propellers%20by%20using%20self-hardening%20sand%20molds%20made%20by%20robotic%20arms&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Cruz,%20Celso%20E.&rft.date=2021-09-01&rft.volume=116&rft.issue=5-6&rft.spage=1751&rft.epage=1761&rft.pages=1751-1761&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07492-7&rft_dat=%3Cproquest_cross%3E2557672690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557672690&rft_id=info:pmid/&rfr_iscdi=true |