On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms

This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-09, Vol.116 (5-6), p.1751-1761
Hauptverfasser: Cruz, Celso E., Vargas-Arista, B., Gámez-Cuatzin, Hugo, Camacho, Diego, Canto, Alfredo, Villareal-Colin, Ricardo, Castillo-Garcia, Andres, Valdez-Aguayo, Antonio, Rice-Ramirez, José Luis, Guzmán, Isidro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1761
container_issue 5-6
container_start_page 1751
container_title International journal of advanced manufacturing technology
container_volume 116
creator Cruz, Celso E.
Vargas-Arista, B.
Gámez-Cuatzin, Hugo
Camacho, Diego
Canto, Alfredo
Villareal-Colin, Ricardo
Castillo-Garcia, Andres
Valdez-Aguayo, Antonio
Rice-Ramirez, José Luis
Guzmán, Isidro
description This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive strength for the sand hardener resin mix (3.5% resin and 8.5% hardener) of 9.94 ± 0.18 kN. The visual inspection did not reveal cracks, porosity, misruns, or other superficial defects that could affect the propeller’s integrity. The comparison between the three-dimensional model and measured blades was 12 to 16% (including shrinkage of 2 to 5%). Also, the as-cast propeller showed variations ranging from 6.66 to 8.30 mm in comparison to the desired thickness of the finished parts. The mechanical properties, microstructure, and chemical analysis results indicated that the molten alloy was Ni-Al bronze within C95800 specification.
doi_str_mv 10.1007/s00170-021-07492-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557672690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557672690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-cee5e2c9e2afd0ab69322b594eb1ab4b29e3fda3c2f00863262f717a107f25893</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Fk0ibNURa_YGEvejWk7WQ_6MeatML-e7NbwZunYeB53xkeQm4Fvxec64fIudCccRCM68wA02dkJjIpmeQiPyczDqpgUqviklzFuEu4EqqYkc9VR4cN0tZ1o3fVMAakvaed-3YN3Yd-j02DIdLyQMe47dY0YuPZxoUau9Pqupq2fVPHVFHjkQt92Q_birrQxmty4V0T8eZ3zsnH89P74pUtVy9vi8clqyAzA6sQc4TKIDhfc1cqIwHK3GRYCldmJRiUvnayAs95oSQo8FpoJ7j2kBdGzsnd1Jte_hoxDnbXj6FLJy3kuVYalOGJgomqQh9jQG_3Ydu6cLCC26NHO3m0yaM9ebQ6heQUignu1hj-qv9J_QCsonY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557672690</pqid></control><display><type>article</type><title>On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cruz, Celso E. ; Vargas-Arista, B. ; Gámez-Cuatzin, Hugo ; Camacho, Diego ; Canto, Alfredo ; Villareal-Colin, Ricardo ; Castillo-Garcia, Andres ; Valdez-Aguayo, Antonio ; Rice-Ramirez, José Luis ; Guzmán, Isidro</creator><creatorcontrib>Cruz, Celso E. ; Vargas-Arista, B. ; Gámez-Cuatzin, Hugo ; Camacho, Diego ; Canto, Alfredo ; Villareal-Colin, Ricardo ; Castillo-Garcia, Andres ; Valdez-Aguayo, Antonio ; Rice-Ramirez, José Luis ; Guzmán, Isidro</creatorcontrib><description>This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive strength for the sand hardener resin mix (3.5% resin and 8.5% hardener) of 9.94 ± 0.18 kN. The visual inspection did not reveal cracks, porosity, misruns, or other superficial defects that could affect the propeller’s integrity. The comparison between the three-dimensional model and measured blades was 12 to 16% (including shrinkage of 2 to 5%). Also, the as-cast propeller showed variations ranging from 6.66 to 8.30 mm in comparison to the desired thickness of the finished parts. The mechanical properties, microstructure, and chemical analysis results indicated that the molten alloy was Ni-Al bronze within C95800 specification.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07492-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Air hardening ; Aluminum bronzes ; CAD ; CAE) and Design ; Chemical analysis ; Composite materials ; Compressive strength ; Compressor blades ; Computer aided design ; Computer-Aided Engineering (CAD ; Design ; Engineering ; Flaw detection ; Industrial and Production Engineering ; Inspection ; Liquid metals ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Media Management ; Nickel ; Original Article ; Propellers ; Resins ; Robot arms ; Robotics ; Sand molds ; Thickness ; Three dimensional models</subject><ispartof>International journal of advanced manufacturing technology, 2021-09, Vol.116 (5-6), p.1751-1761</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-cee5e2c9e2afd0ab69322b594eb1ab4b29e3fda3c2f00863262f717a107f25893</citedby><cites>FETCH-LOGICAL-c249t-cee5e2c9e2afd0ab69322b594eb1ab4b29e3fda3c2f00863262f717a107f25893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07492-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07492-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cruz, Celso E.</creatorcontrib><creatorcontrib>Vargas-Arista, B.</creatorcontrib><creatorcontrib>Gámez-Cuatzin, Hugo</creatorcontrib><creatorcontrib>Camacho, Diego</creatorcontrib><creatorcontrib>Canto, Alfredo</creatorcontrib><creatorcontrib>Villareal-Colin, Ricardo</creatorcontrib><creatorcontrib>Castillo-Garcia, Andres</creatorcontrib><creatorcontrib>Valdez-Aguayo, Antonio</creatorcontrib><creatorcontrib>Rice-Ramirez, José Luis</creatorcontrib><creatorcontrib>Guzmán, Isidro</creatorcontrib><title>On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive strength for the sand hardener resin mix (3.5% resin and 8.5% hardener) of 9.94 ± 0.18 kN. The visual inspection did not reveal cracks, porosity, misruns, or other superficial defects that could affect the propeller’s integrity. The comparison between the three-dimensional model and measured blades was 12 to 16% (including shrinkage of 2 to 5%). Also, the as-cast propeller showed variations ranging from 6.66 to 8.30 mm in comparison to the desired thickness of the finished parts. The mechanical properties, microstructure, and chemical analysis results indicated that the molten alloy was Ni-Al bronze within C95800 specification.</description><subject>Advanced manufacturing technologies</subject><subject>Air hardening</subject><subject>Aluminum bronzes</subject><subject>CAD</subject><subject>CAE) and Design</subject><subject>Chemical analysis</subject><subject>Composite materials</subject><subject>Compressive strength</subject><subject>Compressor blades</subject><subject>Computer aided design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design</subject><subject>Engineering</subject><subject>Flaw detection</subject><subject>Industrial and Production Engineering</subject><subject>Inspection</subject><subject>Liquid metals</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Nickel</subject><subject>Original Article</subject><subject>Propellers</subject><subject>Resins</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Sand molds</subject><subject>Thickness</subject><subject>Three dimensional models</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Fk0ibNURa_YGEvejWk7WQ_6MeatML-e7NbwZunYeB53xkeQm4Fvxec64fIudCccRCM68wA02dkJjIpmeQiPyczDqpgUqviklzFuEu4EqqYkc9VR4cN0tZ1o3fVMAakvaed-3YN3Yd-j02DIdLyQMe47dY0YuPZxoUau9Pqupq2fVPHVFHjkQt92Q_birrQxmty4V0T8eZ3zsnH89P74pUtVy9vi8clqyAzA6sQc4TKIDhfc1cqIwHK3GRYCldmJRiUvnayAs95oSQo8FpoJ7j2kBdGzsnd1Jte_hoxDnbXj6FLJy3kuVYalOGJgomqQh9jQG_3Ydu6cLCC26NHO3m0yaM9ebQ6heQUignu1hj-qv9J_QCsonY2</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Cruz, Celso E.</creator><creator>Vargas-Arista, B.</creator><creator>Gámez-Cuatzin, Hugo</creator><creator>Camacho, Diego</creator><creator>Canto, Alfredo</creator><creator>Villareal-Colin, Ricardo</creator><creator>Castillo-Garcia, Andres</creator><creator>Valdez-Aguayo, Antonio</creator><creator>Rice-Ramirez, José Luis</creator><creator>Guzmán, Isidro</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210901</creationdate><title>On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms</title><author>Cruz, Celso E. ; Vargas-Arista, B. ; Gámez-Cuatzin, Hugo ; Camacho, Diego ; Canto, Alfredo ; Villareal-Colin, Ricardo ; Castillo-Garcia, Andres ; Valdez-Aguayo, Antonio ; Rice-Ramirez, José Luis ; Guzmán, Isidro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-cee5e2c9e2afd0ab69322b594eb1ab4b29e3fda3c2f00863262f717a107f25893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced manufacturing technologies</topic><topic>Air hardening</topic><topic>Aluminum bronzes</topic><topic>CAD</topic><topic>CAE) and Design</topic><topic>Chemical analysis</topic><topic>Composite materials</topic><topic>Compressive strength</topic><topic>Compressor blades</topic><topic>Computer aided design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design</topic><topic>Engineering</topic><topic>Flaw detection</topic><topic>Industrial and Production Engineering</topic><topic>Inspection</topic><topic>Liquid metals</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Nickel</topic><topic>Original Article</topic><topic>Propellers</topic><topic>Resins</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Sand molds</topic><topic>Thickness</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz, Celso E.</creatorcontrib><creatorcontrib>Vargas-Arista, B.</creatorcontrib><creatorcontrib>Gámez-Cuatzin, Hugo</creatorcontrib><creatorcontrib>Camacho, Diego</creatorcontrib><creatorcontrib>Canto, Alfredo</creatorcontrib><creatorcontrib>Villareal-Colin, Ricardo</creatorcontrib><creatorcontrib>Castillo-Garcia, Andres</creatorcontrib><creatorcontrib>Valdez-Aguayo, Antonio</creatorcontrib><creatorcontrib>Rice-Ramirez, José Luis</creatorcontrib><creatorcontrib>Guzmán, Isidro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz, Celso E.</au><au>Vargas-Arista, B.</au><au>Gámez-Cuatzin, Hugo</au><au>Camacho, Diego</au><au>Canto, Alfredo</au><au>Villareal-Colin, Ricardo</au><au>Castillo-Garcia, Andres</au><au>Valdez-Aguayo, Antonio</au><au>Rice-Ramirez, José Luis</au><au>Guzmán, Isidro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>116</volume><issue>5-6</issue><spage>1751</spage><epage>1761</epage><pages>1751-1761</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This work presented the versatility of the manufacture of naval propellers through machined self-hardening sand molds by an ABB®; robotic arm using computer-aided design programmed trajectories with a model that included an oversize of 4.5 mm in blade thickness. The results indicated a compressive strength for the sand hardener resin mix (3.5% resin and 8.5% hardener) of 9.94 ± 0.18 kN. The visual inspection did not reveal cracks, porosity, misruns, or other superficial defects that could affect the propeller’s integrity. The comparison between the three-dimensional model and measured blades was 12 to 16% (including shrinkage of 2 to 5%). Also, the as-cast propeller showed variations ranging from 6.66 to 8.30 mm in comparison to the desired thickness of the finished parts. The mechanical properties, microstructure, and chemical analysis results indicated that the molten alloy was Ni-Al bronze within C95800 specification.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07492-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021-09, Vol.116 (5-6), p.1751-1761
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2557672690
source SpringerLink Journals - AutoHoldings
subjects Advanced manufacturing technologies
Air hardening
Aluminum bronzes
CAD
CAE) and Design
Chemical analysis
Composite materials
Compressive strength
Compressor blades
Computer aided design
Computer-Aided Engineering (CAD
Design
Engineering
Flaw detection
Industrial and Production Engineering
Inspection
Liquid metals
Manufacturing
Mechanical Engineering
Mechanical properties
Media Management
Nickel
Original Article
Propellers
Resins
Robot arms
Robotics
Sand molds
Thickness
Three dimensional models
title On the manufacture of naval propellers by using self-hardening sand molds made by robotic arms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20manufacture%20of%20naval%20propellers%20by%20using%20self-hardening%20sand%20molds%20made%20by%20robotic%20arms&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Cruz,%20Celso%20E.&rft.date=2021-09-01&rft.volume=116&rft.issue=5-6&rft.spage=1751&rft.epage=1761&rft.pages=1751-1761&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07492-7&rft_dat=%3Cproquest_cross%3E2557672690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557672690&rft_id=info:pmid/&rfr_iscdi=true