Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries

Given the inherent performance limitations of intercalation‐based lithium‐ion batteries, solid‐state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS2) a promising cathode‐active material. In this work, FeS2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2021-08, Vol.133 (33), p.18096-18100
Hauptverfasser: Dewald, Georg F., Liaqat, Zainab, Lange, Martin Alexander, Tremel, Wolfgang, Zeier, Wolfgang G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18100
container_issue 33
container_start_page 18096
container_title Angewandte Chemie
container_volume 133
creator Dewald, Georg F.
Liaqat, Zainab
Lange, Martin Alexander
Tremel, Wolfgang
Zeier, Wolfgang G.
description Given the inherent performance limitations of intercalation‐based lithium‐ion batteries, solid‐state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS2) a promising cathode‐active material. In this work, FeS2 nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 10 nm and 35 nm were synthesized. The electrochemical performance was evaluated in solid‐state cells with a Li‐argyrodite solid electrolyte. While the reduction of FeS2 was found to be irreversible in the initial discharge, a stable cycling of the reduced species was observed subsequently. A positive effect of smaller particle dimensions on FeS2 utilization was identified, which can be attributed to a higher interfacial contact area and shortened diffusion pathways inside the FeS2 particles. These results highlight the general importance of morphological design to exploit the promising theoretical capacity of conversion electrodes in solid‐state batteries. Particle‐size reduction of iron sulfide nanoparticles improves its performance as an active material in solid‐state conversion cathodes: For reduced particle dimensions, the electrochemical utilization of FeS2 is increased. The potential of FeS2 as an electrode in solid‐state batteries is highlighted and the importance of the morphological design of battery materials is underscored.
doi_str_mv 10.1002/ange.202106018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557662374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557662374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2028-d47a753b9dca97f77362fe8be5e3dbbb06e6d1f29259fbe000e24c311f9f2eee3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTvFPbMdjqUqpVJWhMFtOco1chbjYiRBMPALPyJOQqghGpjvc79z76SB0ScmEEsKubfsEE0YYJZLQ4giNqGA040qoYzQiJM-zguX6FJ2ltCWESKb0CC2WrWt6aCvAweFlDC3e9I3zNeC1bcPOxs5XDeCNf4eE_bANja-_Pj43ne0A39iug-ghnaMTZ5sEFz9zjB5v5w-zu2x1v1jOpqusGpoVWZ0rqwQvdV1ZrZxSXDIHRQkCeF2WJZEga-qYZkK7EoaawPKKU-q0YwDAx-jqcHcXw0sPqTPb0Md2eGmYEEpKxlU-pCaHVBVDShGc2UX_bOObocTsZZm9LPMrawD0AXj1Dbz9kzbT9WL-x34D1JNu1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557662374</pqid></control><display><type>article</type><title>Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Dewald, Georg F. ; Liaqat, Zainab ; Lange, Martin Alexander ; Tremel, Wolfgang ; Zeier, Wolfgang G.</creator><creatorcontrib>Dewald, Georg F. ; Liaqat, Zainab ; Lange, Martin Alexander ; Tremel, Wolfgang ; Zeier, Wolfgang G.</creatorcontrib><description>Given the inherent performance limitations of intercalation‐based lithium‐ion batteries, solid‐state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS2) a promising cathode‐active material. In this work, FeS2 nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 10 nm and 35 nm were synthesized. The electrochemical performance was evaluated in solid‐state cells with a Li‐argyrodite solid electrolyte. While the reduction of FeS2 was found to be irreversible in the initial discharge, a stable cycling of the reduced species was observed subsequently. A positive effect of smaller particle dimensions on FeS2 utilization was identified, which can be attributed to a higher interfacial contact area and shortened diffusion pathways inside the FeS2 particles. These results highlight the general importance of morphological design to exploit the promising theoretical capacity of conversion electrodes in solid‐state batteries. Particle‐size reduction of iron sulfide nanoparticles improves its performance as an active material in solid‐state conversion cathodes: For reduced particle dimensions, the electrochemical utilization of FeS2 is increased. The potential of FeS2 as an electrode in solid‐state batteries is highlighted and the importance of the morphological design of battery materials is underscored.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202106018</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Conversion ; conversion electrodes ; Electrochemical analysis ; Electrochemistry ; Electrolytic cells ; Energy storage ; Iron ; iron sulfide ; Iron sulfides ; Lithium ; Lithium-ion batteries ; Nanoparticles ; Performance evaluation ; Pyrite ; Solid electrolytes ; solid-state batteries ; Specific capacity ; Storage batteries</subject><ispartof>Angewandte Chemie, 2021-08, Vol.133 (33), p.18096-18100</ispartof><rights>2021 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2028-d47a753b9dca97f77362fe8be5e3dbbb06e6d1f29259fbe000e24c311f9f2eee3</citedby><cites>FETCH-LOGICAL-c2028-d47a753b9dca97f77362fe8be5e3dbbb06e6d1f29259fbe000e24c311f9f2eee3</cites><orcidid>0000-0001-7749-5089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202106018$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202106018$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dewald, Georg F.</creatorcontrib><creatorcontrib>Liaqat, Zainab</creatorcontrib><creatorcontrib>Lange, Martin Alexander</creatorcontrib><creatorcontrib>Tremel, Wolfgang</creatorcontrib><creatorcontrib>Zeier, Wolfgang G.</creatorcontrib><title>Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries</title><title>Angewandte Chemie</title><description>Given the inherent performance limitations of intercalation‐based lithium‐ion batteries, solid‐state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS2) a promising cathode‐active material. In this work, FeS2 nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 10 nm and 35 nm were synthesized. The electrochemical performance was evaluated in solid‐state cells with a Li‐argyrodite solid electrolyte. While the reduction of FeS2 was found to be irreversible in the initial discharge, a stable cycling of the reduced species was observed subsequently. A positive effect of smaller particle dimensions on FeS2 utilization was identified, which can be attributed to a higher interfacial contact area and shortened diffusion pathways inside the FeS2 particles. These results highlight the general importance of morphological design to exploit the promising theoretical capacity of conversion electrodes in solid‐state batteries. Particle‐size reduction of iron sulfide nanoparticles improves its performance as an active material in solid‐state conversion cathodes: For reduced particle dimensions, the electrochemical utilization of FeS2 is increased. The potential of FeS2 as an electrode in solid‐state batteries is highlighted and the importance of the morphological design of battery materials is underscored.</description><subject>Chemistry</subject><subject>Conversion</subject><subject>conversion electrodes</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Iron</subject><subject>iron sulfide</subject><subject>Iron sulfides</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanoparticles</subject><subject>Performance evaluation</subject><subject>Pyrite</subject><subject>Solid electrolytes</subject><subject>solid-state batteries</subject><subject>Specific capacity</subject><subject>Storage batteries</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL1OwzAURi0EEqWwMltiTvFPbMdjqUqpVJWhMFtOco1chbjYiRBMPALPyJOQqghGpjvc79z76SB0ScmEEsKubfsEE0YYJZLQ4giNqGA040qoYzQiJM-zguX6FJ2ltCWESKb0CC2WrWt6aCvAweFlDC3e9I3zNeC1bcPOxs5XDeCNf4eE_bANja-_Pj43ne0A39iug-ghnaMTZ5sEFz9zjB5v5w-zu2x1v1jOpqusGpoVWZ0rqwQvdV1ZrZxSXDIHRQkCeF2WJZEga-qYZkK7EoaawPKKU-q0YwDAx-jqcHcXw0sPqTPb0Md2eGmYEEpKxlU-pCaHVBVDShGc2UX_bOObocTsZZm9LPMrawD0AXj1Dbz9kzbT9WL-x34D1JNu1w</recordid><startdate>20210809</startdate><enddate>20210809</enddate><creator>Dewald, Georg F.</creator><creator>Liaqat, Zainab</creator><creator>Lange, Martin Alexander</creator><creator>Tremel, Wolfgang</creator><creator>Zeier, Wolfgang G.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7749-5089</orcidid></search><sort><creationdate>20210809</creationdate><title>Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries</title><author>Dewald, Georg F. ; Liaqat, Zainab ; Lange, Martin Alexander ; Tremel, Wolfgang ; Zeier, Wolfgang G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2028-d47a753b9dca97f77362fe8be5e3dbbb06e6d1f29259fbe000e24c311f9f2eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Conversion</topic><topic>conversion electrodes</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Iron</topic><topic>iron sulfide</topic><topic>Iron sulfides</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanoparticles</topic><topic>Performance evaluation</topic><topic>Pyrite</topic><topic>Solid electrolytes</topic><topic>solid-state batteries</topic><topic>Specific capacity</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dewald, Georg F.</creatorcontrib><creatorcontrib>Liaqat, Zainab</creatorcontrib><creatorcontrib>Lange, Martin Alexander</creatorcontrib><creatorcontrib>Tremel, Wolfgang</creatorcontrib><creatorcontrib>Zeier, Wolfgang G.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dewald, Georg F.</au><au>Liaqat, Zainab</au><au>Lange, Martin Alexander</au><au>Tremel, Wolfgang</au><au>Zeier, Wolfgang G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-08-09</date><risdate>2021</risdate><volume>133</volume><issue>33</issue><spage>18096</spage><epage>18100</epage><pages>18096-18100</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Given the inherent performance limitations of intercalation‐based lithium‐ion batteries, solid‐state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS2) a promising cathode‐active material. In this work, FeS2 nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 10 nm and 35 nm were synthesized. The electrochemical performance was evaluated in solid‐state cells with a Li‐argyrodite solid electrolyte. While the reduction of FeS2 was found to be irreversible in the initial discharge, a stable cycling of the reduced species was observed subsequently. A positive effect of smaller particle dimensions on FeS2 utilization was identified, which can be attributed to a higher interfacial contact area and shortened diffusion pathways inside the FeS2 particles. These results highlight the general importance of morphological design to exploit the promising theoretical capacity of conversion electrodes in solid‐state batteries. Particle‐size reduction of iron sulfide nanoparticles improves its performance as an active material in solid‐state conversion cathodes: For reduced particle dimensions, the electrochemical utilization of FeS2 is increased. The potential of FeS2 as an electrode in solid‐state batteries is highlighted and the importance of the morphological design of battery materials is underscored.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202106018</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7749-5089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2021-08, Vol.133 (33), p.18096-18100
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2557662374
source Wiley Online Library - AutoHoldings Journals
subjects Chemistry
Conversion
conversion electrodes
Electrochemical analysis
Electrochemistry
Electrolytic cells
Energy storage
Iron
iron sulfide
Iron sulfides
Lithium
Lithium-ion batteries
Nanoparticles
Performance evaluation
Pyrite
Solid electrolytes
solid-state batteries
Specific capacity
Storage batteries
title Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Iron%20Sulfide%20Nanoparticle%20Sizes%20in%20Solid%E2%80%90State%20Batteries&rft.jtitle=Angewandte%20Chemie&rft.au=Dewald,%20Georg%20F.&rft.date=2021-08-09&rft.volume=133&rft.issue=33&rft.spage=18096&rft.epage=18100&rft.pages=18096-18100&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202106018&rft_dat=%3Cproquest_cross%3E2557662374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557662374&rft_id=info:pmid/&rfr_iscdi=true