Unmanned Aerial Vehicle Remote Sensing Image Segmentation Method by Combining Superpixels with multi-features Distance Measure

Image segmentation is the foundation and key step of object-level classification and change detection. In this paper, a segmentation method of UAV remote sensing image based on multi-features distance measure and superpixels is proposed. First, the simple linear iterative clustering (SLIC) algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2019-03, Vol.234 (1), p.12022
Hauptverfasser: Huang, Liang, Song, Jing, Yu, Xueqin, Fang, Liuyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12022
container_title IOP conference series. Earth and environmental science
container_volume 234
creator Huang, Liang
Song, Jing
Yu, Xueqin
Fang, Liuyang
description Image segmentation is the foundation and key step of object-level classification and change detection. In this paper, a segmentation method of UAV remote sensing image based on multi-features distance measure and superpixels is proposed. First, the simple linear iterative clustering (SLIC) algorithm is used to segment the unmanned aerial vehicle (UAV) remote sensing image to obtain the initial superpixels. Then the distance measures of the spectral, texture, shape and area features are used as the criterion for initial superpixels merging. Finally, merger termination when the number of regions reaches the set number. Two groups of UAV remote sensing images are selected to evaluate the experimental results through visual evaluation. The experimental results show that the proposed method can be used to aggregate objects of different scales, and the segmentation effect is satisfactory.
doi_str_mv 10.1088/1755-1315/234/1/012022
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2557535091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557535091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3222-cdfe272e1e262581fb5216a9a568873664edc62a08eab57b3a463bf315cbb74a3</originalsourceid><addsrcrecordid>eNqFkFtLwzAYhosoOKd_QQLeeFOXQ5N2l2NOHUwE57wNaft1y2jTmqTobvzttkwmguBVTs_7fuQJgkuCbwhOkhGJOQ8JI3xEWTQiI0wopvQoGBwejg97HJ8GZ85tMRZxxMaD4HNlKmUM5GgCVqsSvcJGZyWgZ6hqD2gJxmmzRvNKrfvTugLjlde1QY_gN3WO0h2a1lWqTY8t2wZsoz-gdOhd-w2q2tLrsADlWwsO3WrnlcmgCyvX3ZwHJ4UqHVx8r8NgdTd7mT6Ei6f7-XSyCDNGKQ2zvAAaUyBABeUJKVJOiVBjxUWSxEyICPJMUIUTUCmPU6YiwdKi-3qWpnGk2DC42vc2tn5rwXm5rVtrupGSch5zxvGYdJTYU5mtnbNQyMbqStmdJFj2rmWvUfZKZedaErl33QWv90FdNz_Ns9nyFyabvOhQ-gf6T_8XMFCOzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557535091</pqid></control><display><type>article</type><title>Unmanned Aerial Vehicle Remote Sensing Image Segmentation Method by Combining Superpixels with multi-features Distance Measure</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Huang, Liang ; Song, Jing ; Yu, Xueqin ; Fang, Liuyang</creator><creatorcontrib>Huang, Liang ; Song, Jing ; Yu, Xueqin ; Fang, Liuyang</creatorcontrib><description>Image segmentation is the foundation and key step of object-level classification and change detection. In this paper, a segmentation method of UAV remote sensing image based on multi-features distance measure and superpixels is proposed. First, the simple linear iterative clustering (SLIC) algorithm is used to segment the unmanned aerial vehicle (UAV) remote sensing image to obtain the initial superpixels. Then the distance measures of the spectral, texture, shape and area features are used as the criterion for initial superpixels merging. Finally, merger termination when the number of regions reaches the set number. Two groups of UAV remote sensing images are selected to evaluate the experimental results through visual evaluation. The experimental results show that the proposed method can be used to aggregate objects of different scales, and the segmentation effect is satisfactory.</description><identifier>ISSN: 1755-1307</identifier><identifier>ISSN: 1755-1315</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/234/1/012022</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Clustering ; Evaluation ; Image classification ; Image processing ; Image segmentation ; Remote sensing ; Unmanned aerial vehicles</subject><ispartof>IOP conference series. Earth and environmental science, 2019-03, Vol.234 (1), p.12022</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3222-cdfe272e1e262581fb5216a9a568873664edc62a08eab57b3a463bf315cbb74a3</citedby><cites>FETCH-LOGICAL-c3222-cdfe272e1e262581fb5216a9a568873664edc62a08eab57b3a463bf315cbb74a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/234/1/012022/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Huang, Liang</creatorcontrib><creatorcontrib>Song, Jing</creatorcontrib><creatorcontrib>Yu, Xueqin</creatorcontrib><creatorcontrib>Fang, Liuyang</creatorcontrib><title>Unmanned Aerial Vehicle Remote Sensing Image Segmentation Method by Combining Superpixels with multi-features Distance Measure</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Image segmentation is the foundation and key step of object-level classification and change detection. In this paper, a segmentation method of UAV remote sensing image based on multi-features distance measure and superpixels is proposed. First, the simple linear iterative clustering (SLIC) algorithm is used to segment the unmanned aerial vehicle (UAV) remote sensing image to obtain the initial superpixels. Then the distance measures of the spectral, texture, shape and area features are used as the criterion for initial superpixels merging. Finally, merger termination when the number of regions reaches the set number. Two groups of UAV remote sensing images are selected to evaluate the experimental results through visual evaluation. The experimental results show that the proposed method can be used to aggregate objects of different scales, and the segmentation effect is satisfactory.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Evaluation</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Remote sensing</subject><subject>Unmanned aerial vehicles</subject><issn>1755-1307</issn><issn>1755-1315</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkFtLwzAYhosoOKd_QQLeeFOXQ5N2l2NOHUwE57wNaft1y2jTmqTobvzttkwmguBVTs_7fuQJgkuCbwhOkhGJOQ8JI3xEWTQiI0wopvQoGBwejg97HJ8GZ85tMRZxxMaD4HNlKmUM5GgCVqsSvcJGZyWgZ6hqD2gJxmmzRvNKrfvTugLjlde1QY_gN3WO0h2a1lWqTY8t2wZsoz-gdOhd-w2q2tLrsADlWwsO3WrnlcmgCyvX3ZwHJ4UqHVx8r8NgdTd7mT6Ei6f7-XSyCDNGKQ2zvAAaUyBABeUJKVJOiVBjxUWSxEyICPJMUIUTUCmPU6YiwdKi-3qWpnGk2DC42vc2tn5rwXm5rVtrupGSch5zxvGYdJTYU5mtnbNQyMbqStmdJFj2rmWvUfZKZedaErl33QWv90FdNz_Ns9nyFyabvOhQ-gf6T_8XMFCOzQ</recordid><startdate>20190308</startdate><enddate>20190308</enddate><creator>Huang, Liang</creator><creator>Song, Jing</creator><creator>Yu, Xueqin</creator><creator>Fang, Liuyang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20190308</creationdate><title>Unmanned Aerial Vehicle Remote Sensing Image Segmentation Method by Combining Superpixels with multi-features Distance Measure</title><author>Huang, Liang ; Song, Jing ; Yu, Xueqin ; Fang, Liuyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3222-cdfe272e1e262581fb5216a9a568873664edc62a08eab57b3a463bf315cbb74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Evaluation</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Remote sensing</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Liang</creatorcontrib><creatorcontrib>Song, Jing</creatorcontrib><creatorcontrib>Yu, Xueqin</creatorcontrib><creatorcontrib>Fang, Liuyang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Liang</au><au>Song, Jing</au><au>Yu, Xueqin</au><au>Fang, Liuyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unmanned Aerial Vehicle Remote Sensing Image Segmentation Method by Combining Superpixels with multi-features Distance Measure</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2019-03-08</date><risdate>2019</risdate><volume>234</volume><issue>1</issue><spage>12022</spage><pages>12022-</pages><issn>1755-1307</issn><issn>1755-1315</issn><eissn>1755-1315</eissn><abstract>Image segmentation is the foundation and key step of object-level classification and change detection. In this paper, a segmentation method of UAV remote sensing image based on multi-features distance measure and superpixels is proposed. First, the simple linear iterative clustering (SLIC) algorithm is used to segment the unmanned aerial vehicle (UAV) remote sensing image to obtain the initial superpixels. Then the distance measures of the spectral, texture, shape and area features are used as the criterion for initial superpixels merging. Finally, merger termination when the number of regions reaches the set number. Two groups of UAV remote sensing images are selected to evaluate the experimental results through visual evaluation. The experimental results show that the proposed method can be used to aggregate objects of different scales, and the segmentation effect is satisfactory.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/234/1/012022</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2019-03, Vol.234 (1), p.12022
issn 1755-1307
1755-1315
1755-1315
language eng
recordid cdi_proquest_journals_2557535091
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Algorithms
Clustering
Evaluation
Image classification
Image processing
Image segmentation
Remote sensing
Unmanned aerial vehicles
title Unmanned Aerial Vehicle Remote Sensing Image Segmentation Method by Combining Superpixels with multi-features Distance Measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unmanned%20Aerial%20Vehicle%20Remote%20Sensing%20Image%20Segmentation%20Method%20by%20Combining%20Superpixels%20with%20multi-features%20Distance%20Measure&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Huang,%20Liang&rft.date=2019-03-08&rft.volume=234&rft.issue=1&rft.spage=12022&rft.pages=12022-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/234/1/012022&rft_dat=%3Cproquest_iop_j%3E2557535091%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557535091&rft_id=info:pmid/&rfr_iscdi=true