The kinetic equation solutions and Kolmogorov spectra

The Hasselmann kinetic equation (KE) for stochastic nonlinear surface waves is studied numerically with the aim of searching for features of the Kolmogorov turbulence (KT). To this aim, solutions of the KE for the long-term wave-spectrum evolution are executed. As far as the total wave action N and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2019-02, Vol.231 (1), p.12043
Hauptverfasser: Polnikov, V G, Qiao, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12043
container_title IOP conference series. Earth and environmental science
container_volume 231
creator Polnikov, V G
Qiao, F
description The Hasselmann kinetic equation (KE) for stochastic nonlinear surface waves is studied numerically with the aim of searching for features of the Kolmogorov turbulence (KT). To this aim, solutions of the KE for the long-term wave-spectrum evolution are executed. As far as the total wave action N and wave energy E are not preserved simultaneously in the course of the KE solution, two versions of the numerical algorithm are used, preserving values of N or E in separate. In every case, the KE solutions result in formation of the self-similar spectrum shape, Ssf(ω), with the frequency tail Ssf(ω) ∼ ω-4, independently of the N- or E-fluxes generated by the nonlinear interactions. This urges us to state that the used KE does not obey to regulations of the KT. The reason of this fact resides in the mathematical feature of the kinetic integral, which, in any case of solving the KE, results in formation of the nonlinear energy-transfer tail of kind Nl(ω) ∼ - ω-4, what stabilizes the spectral tail in form SSf(ω) ∼ ω-4.
doi_str_mv 10.1088/1755-1315/231/1/012043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557524899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557524899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-d81406875c390bcad621b65c5753d684d202b0356c322ab60fb3526b6f3d02423</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFa_ggS8eImZ_ZvkKKVWseDBel42uxtNTbPpbiL47U2IVATB0zyY93vDPIQuMdxgyLIEp5zHmGKeEIoTnAAmwOgRmh0WxwcN6Sk6C2ELIFJG8xnimzcbvVeN7Sod2X2vuso1UXB1P4oQqcZEj67euVfn3UcUWqs7r87RSanqYC--5xy93C03i_t4_bR6WNyuY80g7WKTYQYiS7mmORRaGUFwIbjmKadGZMwQIAVQLjQlRBUCyoJyIgpRUgOEETpHV1Nu692-t6GTW9f7ZjgpCR9SCMvyfHCJyaW9C8HbUra-2in_KTHIsSI5fi_HJuRQkcRyqmgAyQRWrv1J_he6_gNaLp9_2WRrSvoFHL5zFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557524899</pqid></control><display><type>article</type><title>The kinetic equation solutions and Kolmogorov spectra</title><source>IOPscience journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB Electronic Journals Library</source><creator>Polnikov, V G ; Qiao, F</creator><creatorcontrib>Polnikov, V G ; Qiao, F</creatorcontrib><description>The Hasselmann kinetic equation (KE) for stochastic nonlinear surface waves is studied numerically with the aim of searching for features of the Kolmogorov turbulence (KT). To this aim, solutions of the KE for the long-term wave-spectrum evolution are executed. As far as the total wave action N and wave energy E are not preserved simultaneously in the course of the KE solution, two versions of the numerical algorithm are used, preserving values of N or E in separate. In every case, the KE solutions result in formation of the self-similar spectrum shape, Ssf(ω), with the frequency tail Ssf(ω) ∼ ω-4, independently of the N- or E-fluxes generated by the nonlinear interactions. This urges us to state that the used KE does not obey to regulations of the KT. The reason of this fact resides in the mathematical feature of the kinetic integral, which, in any case of solving the KE, results in formation of the nonlinear energy-transfer tail of kind Nl(ω) ∼ - ω-4, what stabilizes the spectral tail in form SSf(ω) ∼ ω-4.</description><identifier>ISSN: 1755-1307</identifier><identifier>ISSN: 1755-1315</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/231/1/012043</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Fluxes ; Kinetic equations ; Numerical analysis ; Self-similarity ; Surface waves ; Tails ; Wave action ; Wave energy ; Wave power</subject><ispartof>IOP conference series. Earth and environmental science, 2019-02, Vol.231 (1), p.12043</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-d81406875c390bcad621b65c5753d684d202b0356c322ab60fb3526b6f3d02423</citedby><cites>FETCH-LOGICAL-c407t-d81406875c390bcad621b65c5753d684d202b0356c322ab60fb3526b6f3d02423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/231/1/012043/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Polnikov, V G</creatorcontrib><creatorcontrib>Qiao, F</creatorcontrib><title>The kinetic equation solutions and Kolmogorov spectra</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>The Hasselmann kinetic equation (KE) for stochastic nonlinear surface waves is studied numerically with the aim of searching for features of the Kolmogorov turbulence (KT). To this aim, solutions of the KE for the long-term wave-spectrum evolution are executed. As far as the total wave action N and wave energy E are not preserved simultaneously in the course of the KE solution, two versions of the numerical algorithm are used, preserving values of N or E in separate. In every case, the KE solutions result in formation of the self-similar spectrum shape, Ssf(ω), with the frequency tail Ssf(ω) ∼ ω-4, independently of the N- or E-fluxes generated by the nonlinear interactions. This urges us to state that the used KE does not obey to regulations of the KT. The reason of this fact resides in the mathematical feature of the kinetic integral, which, in any case of solving the KE, results in formation of the nonlinear energy-transfer tail of kind Nl(ω) ∼ - ω-4, what stabilizes the spectral tail in form SSf(ω) ∼ ω-4.</description><subject>Algorithms</subject><subject>Fluxes</subject><subject>Kinetic equations</subject><subject>Numerical analysis</subject><subject>Self-similarity</subject><subject>Surface waves</subject><subject>Tails</subject><subject>Wave action</subject><subject>Wave energy</subject><subject>Wave power</subject><issn>1755-1307</issn><issn>1755-1315</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE9Lw0AQxRdRsFa_ggS8eImZ_ZvkKKVWseDBel42uxtNTbPpbiL47U2IVATB0zyY93vDPIQuMdxgyLIEp5zHmGKeEIoTnAAmwOgRmh0WxwcN6Sk6C2ELIFJG8xnimzcbvVeN7Sod2X2vuso1UXB1P4oQqcZEj67euVfn3UcUWqs7r87RSanqYC--5xy93C03i_t4_bR6WNyuY80g7WKTYQYiS7mmORRaGUFwIbjmKadGZMwQIAVQLjQlRBUCyoJyIgpRUgOEETpHV1Nu692-t6GTW9f7ZjgpCR9SCMvyfHCJyaW9C8HbUra-2in_KTHIsSI5fi_HJuRQkcRyqmgAyQRWrv1J_he6_gNaLp9_2WRrSvoFHL5zFQ</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Polnikov, V G</creator><creator>Qiao, F</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20190212</creationdate><title>The kinetic equation solutions and Kolmogorov spectra</title><author>Polnikov, V G ; Qiao, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-d81406875c390bcad621b65c5753d684d202b0356c322ab60fb3526b6f3d02423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Fluxes</topic><topic>Kinetic equations</topic><topic>Numerical analysis</topic><topic>Self-similarity</topic><topic>Surface waves</topic><topic>Tails</topic><topic>Wave action</topic><topic>Wave energy</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polnikov, V G</creatorcontrib><creatorcontrib>Qiao, F</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polnikov, V G</au><au>Qiao, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The kinetic equation solutions and Kolmogorov spectra</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2019-02-12</date><risdate>2019</risdate><volume>231</volume><issue>1</issue><spage>12043</spage><pages>12043-</pages><issn>1755-1307</issn><issn>1755-1315</issn><eissn>1755-1315</eissn><abstract>The Hasselmann kinetic equation (KE) for stochastic nonlinear surface waves is studied numerically with the aim of searching for features of the Kolmogorov turbulence (KT). To this aim, solutions of the KE for the long-term wave-spectrum evolution are executed. As far as the total wave action N and wave energy E are not preserved simultaneously in the course of the KE solution, two versions of the numerical algorithm are used, preserving values of N or E in separate. In every case, the KE solutions result in formation of the self-similar spectrum shape, Ssf(ω), with the frequency tail Ssf(ω) ∼ ω-4, independently of the N- or E-fluxes generated by the nonlinear interactions. This urges us to state that the used KE does not obey to regulations of the KT. The reason of this fact resides in the mathematical feature of the kinetic integral, which, in any case of solving the KE, results in formation of the nonlinear energy-transfer tail of kind Nl(ω) ∼ - ω-4, what stabilizes the spectral tail in form SSf(ω) ∼ ω-4.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/231/1/012043</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2019-02, Vol.231 (1), p.12043
issn 1755-1307
1755-1315
1755-1315
language eng
recordid cdi_proquest_journals_2557524899
source IOPscience journals; Institute of Physics Open Access Journal Titles; EZB Electronic Journals Library
subjects Algorithms
Fluxes
Kinetic equations
Numerical analysis
Self-similarity
Surface waves
Tails
Wave action
Wave energy
Wave power
title The kinetic equation solutions and Kolmogorov spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T18%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20kinetic%20equation%20solutions%20and%20Kolmogorov%20spectra&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Polnikov,%20V%20G&rft.date=2019-02-12&rft.volume=231&rft.issue=1&rft.spage=12043&rft.pages=12043-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/231/1/012043&rft_dat=%3Cproquest_cross%3E2557524899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557524899&rft_id=info:pmid/&rfr_iscdi=true