Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET

The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a n -channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-09, Vol.50 (9), p.5196-5208
Hauptverfasser: Ramos-Carrazco, A., Gallardo-Cubedo, J. A., Vera-Marquina, A., Leal-Cruz, A. L., Noriega, J. R., Zuñiga-Islas, C., Rojas-Hernández, A. G., Gomez-Fuentes, R., Berman-Mendoza, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5208
container_issue 9
container_start_page 5196
container_title Journal of electronic materials
container_volume 50
creator Ramos-Carrazco, A.
Gallardo-Cubedo, J. A.
Vera-Marquina, A.
Leal-Cruz, A. L.
Noriega, J. R.
Zuñiga-Islas, C.
Rojas-Hernández, A. G.
Gomez-Fuentes, R.
Berman-Mendoza, D.
description The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a n -channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to analyze the behavior of the structural, optical, and morphological properties of the ZnO semiconductor. To study the behavior of the assembled equipment, the main parameters of substrate temperature, oxygen flow, and chamber pressure were varied at two levels. The ZnO films were studied by means of the characterization techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, photoluminescence, and cathodoluminescence. SEM images showed that the submicrometric ZnO morphologies were obtained from the interaction of the three growth parameters. XRD analysis exhibited an hexagonal wurtzite structure without the presence of other crystalline phases. The Raman response was analyzed according to the dependence of the oxygen flow, temperature, and growth pressure. The emission obtained under ultraviolet laser excitation showed two strong emissions, at 487 nm and 514 nm. In comparison, cathodoluminescence spectra of the ZnO samples exhibited a dominant transition centered at 380 nm. According to the results of the factorial design, one ZnO sample was selected as the active layer for the development of a pseudo-field effect transistor. The transfer and output characteristics of the device were used to study the threshold voltage, carrier mobility, and transconductance behavior. As a result, this work provides an alternative pathway to the fabrication of a n -channel depletion mode ZnO pseudo-transistor using a low-cost and home-built CVD system.
doi_str_mv 10.1007/s11664-021-09038-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557305157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557305157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f8a8bea13fe630482cfeae6efec03caa477e4a38769f259d627cd36f5cc11af53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSz2WR3j1K1CpUKfiBewjSd6Eq7qclWqb_e1RW8eZmB4XnfgYexQ5DHIGVxkgCMyYXMQMhKqlJUW2wAOlcCSvO4zQZSGRA6U3qX7aX0KiVoKGHAcPSCEV1Lsf7Etg4ND54_NVN-US-WiY9j-Gj4bMNHL7SsHS74A65C5Ge0Cqn-4THxU9fW78QnuKHI64bfJFrPg7ie3l6c3-2zHY-LRAe_e8juu-voUkym46vR6UQ4BVUrfInljBCUJ6NkXmbOE5IhT04qh5gXBeWoysJUPtPV3GSFmyvjtXMA6LUasqO-dxXD25pSa1_DOjbdS5tpXSipoZtDlvWUiyGlSN6uYr3EuLEg7bdK26u0nUr7o9JWXUj1odTBzTPFv-p_Ul-REHb3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557305157</pqid></control><display><type>article</type><title>Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET</title><source>Springer Nature - Complete Springer Journals</source><creator>Ramos-Carrazco, A. ; Gallardo-Cubedo, J. A. ; Vera-Marquina, A. ; Leal-Cruz, A. L. ; Noriega, J. R. ; Zuñiga-Islas, C. ; Rojas-Hernández, A. G. ; Gomez-Fuentes, R. ; Berman-Mendoza, D.</creator><creatorcontrib>Ramos-Carrazco, A. ; Gallardo-Cubedo, J. A. ; Vera-Marquina, A. ; Leal-Cruz, A. L. ; Noriega, J. R. ; Zuñiga-Islas, C. ; Rojas-Hernández, A. G. ; Gomez-Fuentes, R. ; Berman-Mendoza, D.</creatorcontrib><description>The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a n -channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to analyze the behavior of the structural, optical, and morphological properties of the ZnO semiconductor. To study the behavior of the assembled equipment, the main parameters of substrate temperature, oxygen flow, and chamber pressure were varied at two levels. The ZnO films were studied by means of the characterization techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, photoluminescence, and cathodoluminescence. SEM images showed that the submicrometric ZnO morphologies were obtained from the interaction of the three growth parameters. XRD analysis exhibited an hexagonal wurtzite structure without the presence of other crystalline phases. The Raman response was analyzed according to the dependence of the oxygen flow, temperature, and growth pressure. The emission obtained under ultraviolet laser excitation showed two strong emissions, at 487 nm and 514 nm. In comparison, cathodoluminescence spectra of the ZnO samples exhibited a dominant transition centered at 380 nm. According to the results of the factorial design, one ZnO sample was selected as the active layer for the development of a pseudo-field effect transistor. The transfer and output characteristics of the device were used to study the threshold voltage, carrier mobility, and transconductance behavior. As a result, this work provides an alternative pathway to the fabrication of a n -channel depletion mode ZnO pseudo-transistor using a low-cost and home-built CVD system.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-021-09038-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier mobility ; Cathodoluminescence ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Depletion ; Design of experiments ; Electronics and Microelectronics ; Factorial design ; Field effect transistors ; Instrumentation ; Materials Science ; Metal oxide semiconductors ; Morphology ; MOSFETs ; Optical and Electronic Materials ; Optical properties ; Original Research Article ; Parameters ; Photoluminescence ; Raman spectroscopy ; Scanning electron microscopy ; Semiconductor devices ; Solid State Physics ; Spectrum analysis ; Substrates ; Threshold voltage ; Transconductance ; Transistors ; Ultraviolet lasers ; Wurtzite ; X-ray diffraction ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of electronic materials, 2021-09, Vol.50 (9), p.5196-5208</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f8a8bea13fe630482cfeae6efec03caa477e4a38769f259d627cd36f5cc11af53</citedby><cites>FETCH-LOGICAL-c319t-f8a8bea13fe630482cfeae6efec03caa477e4a38769f259d627cd36f5cc11af53</cites><orcidid>0000-0002-1267-0090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-021-09038-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-021-09038-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ramos-Carrazco, A.</creatorcontrib><creatorcontrib>Gallardo-Cubedo, J. A.</creatorcontrib><creatorcontrib>Vera-Marquina, A.</creatorcontrib><creatorcontrib>Leal-Cruz, A. L.</creatorcontrib><creatorcontrib>Noriega, J. R.</creatorcontrib><creatorcontrib>Zuñiga-Islas, C.</creatorcontrib><creatorcontrib>Rojas-Hernández, A. G.</creatorcontrib><creatorcontrib>Gomez-Fuentes, R.</creatorcontrib><creatorcontrib>Berman-Mendoza, D.</creatorcontrib><title>Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a n -channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to analyze the behavior of the structural, optical, and morphological properties of the ZnO semiconductor. To study the behavior of the assembled equipment, the main parameters of substrate temperature, oxygen flow, and chamber pressure were varied at two levels. The ZnO films were studied by means of the characterization techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, photoluminescence, and cathodoluminescence. SEM images showed that the submicrometric ZnO morphologies were obtained from the interaction of the three growth parameters. XRD analysis exhibited an hexagonal wurtzite structure without the presence of other crystalline phases. The Raman response was analyzed according to the dependence of the oxygen flow, temperature, and growth pressure. The emission obtained under ultraviolet laser excitation showed two strong emissions, at 487 nm and 514 nm. In comparison, cathodoluminescence spectra of the ZnO samples exhibited a dominant transition centered at 380 nm. According to the results of the factorial design, one ZnO sample was selected as the active layer for the development of a pseudo-field effect transistor. The transfer and output characteristics of the device were used to study the threshold voltage, carrier mobility, and transconductance behavior. As a result, this work provides an alternative pathway to the fabrication of a n -channel depletion mode ZnO pseudo-transistor using a low-cost and home-built CVD system.</description><subject>Carrier mobility</subject><subject>Cathodoluminescence</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Depletion</subject><subject>Design of experiments</subject><subject>Electronics and Microelectronics</subject><subject>Factorial design</subject><subject>Field effect transistors</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Morphology</subject><subject>MOSFETs</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Research Article</subject><subject>Parameters</subject><subject>Photoluminescence</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Semiconductor devices</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Threshold voltage</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Ultraviolet lasers</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSz2WR3j1K1CpUKfiBewjSd6Eq7qclWqb_e1RW8eZmB4XnfgYexQ5DHIGVxkgCMyYXMQMhKqlJUW2wAOlcCSvO4zQZSGRA6U3qX7aX0KiVoKGHAcPSCEV1Lsf7Etg4ND54_NVN-US-WiY9j-Gj4bMNHL7SsHS74A65C5Ge0Cqn-4THxU9fW78QnuKHI64bfJFrPg7ie3l6c3-2zHY-LRAe_e8juu-voUkym46vR6UQ4BVUrfInljBCUJ6NkXmbOE5IhT04qh5gXBeWoysJUPtPV3GSFmyvjtXMA6LUasqO-dxXD25pSa1_DOjbdS5tpXSipoZtDlvWUiyGlSN6uYr3EuLEg7bdK26u0nUr7o9JWXUj1odTBzTPFv-p_Ul-REHb3</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ramos-Carrazco, A.</creator><creator>Gallardo-Cubedo, J. A.</creator><creator>Vera-Marquina, A.</creator><creator>Leal-Cruz, A. L.</creator><creator>Noriega, J. R.</creator><creator>Zuñiga-Islas, C.</creator><creator>Rojas-Hernández, A. G.</creator><creator>Gomez-Fuentes, R.</creator><creator>Berman-Mendoza, D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-1267-0090</orcidid></search><sort><creationdate>20210901</creationdate><title>Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET</title><author>Ramos-Carrazco, A. ; Gallardo-Cubedo, J. A. ; Vera-Marquina, A. ; Leal-Cruz, A. L. ; Noriega, J. R. ; Zuñiga-Islas, C. ; Rojas-Hernández, A. G. ; Gomez-Fuentes, R. ; Berman-Mendoza, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f8a8bea13fe630482cfeae6efec03caa477e4a38769f259d627cd36f5cc11af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier mobility</topic><topic>Cathodoluminescence</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Depletion</topic><topic>Design of experiments</topic><topic>Electronics and Microelectronics</topic><topic>Factorial design</topic><topic>Field effect transistors</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Morphology</topic><topic>MOSFETs</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Research Article</topic><topic>Parameters</topic><topic>Photoluminescence</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Semiconductor devices</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Threshold voltage</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Ultraviolet lasers</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Carrazco, A.</creatorcontrib><creatorcontrib>Gallardo-Cubedo, J. A.</creatorcontrib><creatorcontrib>Vera-Marquina, A.</creatorcontrib><creatorcontrib>Leal-Cruz, A. L.</creatorcontrib><creatorcontrib>Noriega, J. R.</creatorcontrib><creatorcontrib>Zuñiga-Islas, C.</creatorcontrib><creatorcontrib>Rojas-Hernández, A. G.</creatorcontrib><creatorcontrib>Gomez-Fuentes, R.</creatorcontrib><creatorcontrib>Berman-Mendoza, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Carrazco, A.</au><au>Gallardo-Cubedo, J. A.</au><au>Vera-Marquina, A.</au><au>Leal-Cruz, A. L.</au><au>Noriega, J. R.</au><au>Zuñiga-Islas, C.</au><au>Rojas-Hernández, A. G.</au><au>Gomez-Fuentes, R.</au><au>Berman-Mendoza, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>50</volume><issue>9</issue><spage>5196</spage><epage>5208</epage><pages>5196-5208</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a n -channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to analyze the behavior of the structural, optical, and morphological properties of the ZnO semiconductor. To study the behavior of the assembled equipment, the main parameters of substrate temperature, oxygen flow, and chamber pressure were varied at two levels. The ZnO films were studied by means of the characterization techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, photoluminescence, and cathodoluminescence. SEM images showed that the submicrometric ZnO morphologies were obtained from the interaction of the three growth parameters. XRD analysis exhibited an hexagonal wurtzite structure without the presence of other crystalline phases. The Raman response was analyzed according to the dependence of the oxygen flow, temperature, and growth pressure. The emission obtained under ultraviolet laser excitation showed two strong emissions, at 487 nm and 514 nm. In comparison, cathodoluminescence spectra of the ZnO samples exhibited a dominant transition centered at 380 nm. According to the results of the factorial design, one ZnO sample was selected as the active layer for the development of a pseudo-field effect transistor. The transfer and output characteristics of the device were used to study the threshold voltage, carrier mobility, and transconductance behavior. As a result, this work provides an alternative pathway to the fabrication of a n -channel depletion mode ZnO pseudo-transistor using a low-cost and home-built CVD system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-021-09038-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1267-0090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-09, Vol.50 (9), p.5196-5208
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2557305157
source Springer Nature - Complete Springer Journals
subjects Carrier mobility
Cathodoluminescence
Characterization and Evaluation of Materials
Chemical vapor deposition
Chemistry and Materials Science
Depletion
Design of experiments
Electronics and Microelectronics
Factorial design
Field effect transistors
Instrumentation
Materials Science
Metal oxide semiconductors
Morphology
MOSFETs
Optical and Electronic Materials
Optical properties
Original Research Article
Parameters
Photoluminescence
Raman spectroscopy
Scanning electron microscopy
Semiconductor devices
Solid State Physics
Spectrum analysis
Substrates
Threshold voltage
Transconductance
Transistors
Ultraviolet lasers
Wurtzite
X-ray diffraction
Zinc oxide
Zinc oxides
title Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20ZnO%20Films%20Grown%20by%20Chemical%20Vapor%20Deposition%20as%20Active%20Layer%20in%20Pseudo-MOSFET&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Ramos-Carrazco,%20A.&rft.date=2021-09-01&rft.volume=50&rft.issue=9&rft.spage=5196&rft.epage=5208&rft.pages=5196-5208&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-021-09038-9&rft_dat=%3Cproquest_cross%3E2557305157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557305157&rft_id=info:pmid/&rfr_iscdi=true