Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET
The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a n -channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to a...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2021-09, Vol.50 (9), p.5196-5208 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5208 |
---|---|
container_issue | 9 |
container_start_page | 5196 |
container_title | Journal of electronic materials |
container_volume | 50 |
creator | Ramos-Carrazco, A. Gallardo-Cubedo, J. A. Vera-Marquina, A. Leal-Cruz, A. L. Noriega, J. R. Zuñiga-Islas, C. Rojas-Hernández, A. G. Gomez-Fuentes, R. Berman-Mendoza, D. |
description | The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a
n
-channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to analyze the behavior of the structural, optical, and morphological properties of the ZnO semiconductor. To study the behavior of the assembled equipment, the main parameters of substrate temperature, oxygen flow, and chamber pressure were varied at two levels. The ZnO films were studied by means of the characterization techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, photoluminescence, and cathodoluminescence. SEM images showed that the submicrometric ZnO morphologies were obtained from the interaction of the three growth parameters. XRD analysis exhibited an hexagonal wurtzite structure without the presence of other crystalline phases. The Raman response was analyzed according to the dependence of the oxygen flow, temperature, and growth pressure. The emission obtained under ultraviolet laser excitation showed two strong emissions, at 487 nm and 514 nm. In comparison, cathodoluminescence spectra of the ZnO samples exhibited a dominant transition centered at 380 nm. According to the results of the factorial design, one ZnO sample was selected as the active layer for the development of a pseudo-field effect transistor. The transfer and output characteristics of the device were used to study the threshold voltage, carrier mobility, and transconductance behavior. As a result, this work provides an alternative pathway to the fabrication of a
n
-channel depletion mode ZnO pseudo-transistor using a low-cost and home-built CVD system. |
doi_str_mv | 10.1007/s11664-021-09038-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557305157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557305157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f8a8bea13fe630482cfeae6efec03caa477e4a38769f259d627cd36f5cc11af53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSz2WR3j1K1CpUKfiBewjSd6Eq7qclWqb_e1RW8eZmB4XnfgYexQ5DHIGVxkgCMyYXMQMhKqlJUW2wAOlcCSvO4zQZSGRA6U3qX7aX0KiVoKGHAcPSCEV1Lsf7Etg4ND54_NVN-US-WiY9j-Gj4bMNHL7SsHS74A65C5Ge0Cqn-4THxU9fW78QnuKHI64bfJFrPg7ie3l6c3-2zHY-LRAe_e8juu-voUkym46vR6UQ4BVUrfInljBCUJ6NkXmbOE5IhT04qh5gXBeWoysJUPtPV3GSFmyvjtXMA6LUasqO-dxXD25pSa1_DOjbdS5tpXSipoZtDlvWUiyGlSN6uYr3EuLEg7bdK26u0nUr7o9JWXUj1odTBzTPFv-p_Ul-REHb3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557305157</pqid></control><display><type>article</type><title>Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET</title><source>Springer Nature - Complete Springer Journals</source><creator>Ramos-Carrazco, A. ; Gallardo-Cubedo, J. A. ; Vera-Marquina, A. ; Leal-Cruz, A. L. ; Noriega, J. R. ; Zuñiga-Islas, C. ; Rojas-Hernández, A. G. ; Gomez-Fuentes, R. ; Berman-Mendoza, D.</creator><creatorcontrib>Ramos-Carrazco, A. ; Gallardo-Cubedo, J. A. ; Vera-Marquina, A. ; Leal-Cruz, A. L. ; Noriega, J. R. ; Zuñiga-Islas, C. ; Rojas-Hernández, A. G. ; Gomez-Fuentes, R. ; Berman-Mendoza, D.</creatorcontrib><description>The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a
n
-channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to analyze the behavior of the structural, optical, and morphological properties of the ZnO semiconductor. To study the behavior of the assembled equipment, the main parameters of substrate temperature, oxygen flow, and chamber pressure were varied at two levels. The ZnO films were studied by means of the characterization techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, photoluminescence, and cathodoluminescence. SEM images showed that the submicrometric ZnO morphologies were obtained from the interaction of the three growth parameters. XRD analysis exhibited an hexagonal wurtzite structure without the presence of other crystalline phases. The Raman response was analyzed according to the dependence of the oxygen flow, temperature, and growth pressure. The emission obtained under ultraviolet laser excitation showed two strong emissions, at 487 nm and 514 nm. In comparison, cathodoluminescence spectra of the ZnO samples exhibited a dominant transition centered at 380 nm. According to the results of the factorial design, one ZnO sample was selected as the active layer for the development of a pseudo-field effect transistor. The transfer and output characteristics of the device were used to study the threshold voltage, carrier mobility, and transconductance behavior. As a result, this work provides an alternative pathway to the fabrication of a
n
-channel depletion mode ZnO pseudo-transistor using a low-cost and home-built CVD system.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-021-09038-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier mobility ; Cathodoluminescence ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Depletion ; Design of experiments ; Electronics and Microelectronics ; Factorial design ; Field effect transistors ; Instrumentation ; Materials Science ; Metal oxide semiconductors ; Morphology ; MOSFETs ; Optical and Electronic Materials ; Optical properties ; Original Research Article ; Parameters ; Photoluminescence ; Raman spectroscopy ; Scanning electron microscopy ; Semiconductor devices ; Solid State Physics ; Spectrum analysis ; Substrates ; Threshold voltage ; Transconductance ; Transistors ; Ultraviolet lasers ; Wurtzite ; X-ray diffraction ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of electronic materials, 2021-09, Vol.50 (9), p.5196-5208</ispartof><rights>The Minerals, Metals & Materials Society 2021</rights><rights>The Minerals, Metals & Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f8a8bea13fe630482cfeae6efec03caa477e4a38769f259d627cd36f5cc11af53</citedby><cites>FETCH-LOGICAL-c319t-f8a8bea13fe630482cfeae6efec03caa477e4a38769f259d627cd36f5cc11af53</cites><orcidid>0000-0002-1267-0090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-021-09038-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-021-09038-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ramos-Carrazco, A.</creatorcontrib><creatorcontrib>Gallardo-Cubedo, J. A.</creatorcontrib><creatorcontrib>Vera-Marquina, A.</creatorcontrib><creatorcontrib>Leal-Cruz, A. L.</creatorcontrib><creatorcontrib>Noriega, J. R.</creatorcontrib><creatorcontrib>Zuñiga-Islas, C.</creatorcontrib><creatorcontrib>Rojas-Hernández, A. G.</creatorcontrib><creatorcontrib>Gomez-Fuentes, R.</creatorcontrib><creatorcontrib>Berman-Mendoza, D.</creatorcontrib><title>Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a
n
-channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to analyze the behavior of the structural, optical, and morphological properties of the ZnO semiconductor. To study the behavior of the assembled equipment, the main parameters of substrate temperature, oxygen flow, and chamber pressure were varied at two levels. The ZnO films were studied by means of the characterization techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, photoluminescence, and cathodoluminescence. SEM images showed that the submicrometric ZnO morphologies were obtained from the interaction of the three growth parameters. XRD analysis exhibited an hexagonal wurtzite structure without the presence of other crystalline phases. The Raman response was analyzed according to the dependence of the oxygen flow, temperature, and growth pressure. The emission obtained under ultraviolet laser excitation showed two strong emissions, at 487 nm and 514 nm. In comparison, cathodoluminescence spectra of the ZnO samples exhibited a dominant transition centered at 380 nm. According to the results of the factorial design, one ZnO sample was selected as the active layer for the development of a pseudo-field effect transistor. The transfer and output characteristics of the device were used to study the threshold voltage, carrier mobility, and transconductance behavior. As a result, this work provides an alternative pathway to the fabrication of a
n
-channel depletion mode ZnO pseudo-transistor using a low-cost and home-built CVD system.</description><subject>Carrier mobility</subject><subject>Cathodoluminescence</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Depletion</subject><subject>Design of experiments</subject><subject>Electronics and Microelectronics</subject><subject>Factorial design</subject><subject>Field effect transistors</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Morphology</subject><subject>MOSFETs</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Research Article</subject><subject>Parameters</subject><subject>Photoluminescence</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Semiconductor devices</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Threshold voltage</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Ultraviolet lasers</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSz2WR3j1K1CpUKfiBewjSd6Eq7qclWqb_e1RW8eZmB4XnfgYexQ5DHIGVxkgCMyYXMQMhKqlJUW2wAOlcCSvO4zQZSGRA6U3qX7aX0KiVoKGHAcPSCEV1Lsf7Etg4ND54_NVN-US-WiY9j-Gj4bMNHL7SsHS74A65C5Ge0Cqn-4THxU9fW78QnuKHI64bfJFrPg7ie3l6c3-2zHY-LRAe_e8juu-voUkym46vR6UQ4BVUrfInljBCUJ6NkXmbOE5IhT04qh5gXBeWoysJUPtPV3GSFmyvjtXMA6LUasqO-dxXD25pSa1_DOjbdS5tpXSipoZtDlvWUiyGlSN6uYr3EuLEg7bdK26u0nUr7o9JWXUj1odTBzTPFv-p_Ul-REHb3</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ramos-Carrazco, A.</creator><creator>Gallardo-Cubedo, J. A.</creator><creator>Vera-Marquina, A.</creator><creator>Leal-Cruz, A. L.</creator><creator>Noriega, J. R.</creator><creator>Zuñiga-Islas, C.</creator><creator>Rojas-Hernández, A. G.</creator><creator>Gomez-Fuentes, R.</creator><creator>Berman-Mendoza, D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-1267-0090</orcidid></search><sort><creationdate>20210901</creationdate><title>Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET</title><author>Ramos-Carrazco, A. ; Gallardo-Cubedo, J. A. ; Vera-Marquina, A. ; Leal-Cruz, A. L. ; Noriega, J. R. ; Zuñiga-Islas, C. ; Rojas-Hernández, A. G. ; Gomez-Fuentes, R. ; Berman-Mendoza, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f8a8bea13fe630482cfeae6efec03caa477e4a38769f259d627cd36f5cc11af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier mobility</topic><topic>Cathodoluminescence</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Depletion</topic><topic>Design of experiments</topic><topic>Electronics and Microelectronics</topic><topic>Factorial design</topic><topic>Field effect transistors</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Morphology</topic><topic>MOSFETs</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Research Article</topic><topic>Parameters</topic><topic>Photoluminescence</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Semiconductor devices</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Threshold voltage</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Ultraviolet lasers</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Carrazco, A.</creatorcontrib><creatorcontrib>Gallardo-Cubedo, J. A.</creatorcontrib><creatorcontrib>Vera-Marquina, A.</creatorcontrib><creatorcontrib>Leal-Cruz, A. L.</creatorcontrib><creatorcontrib>Noriega, J. R.</creatorcontrib><creatorcontrib>Zuñiga-Islas, C.</creatorcontrib><creatorcontrib>Rojas-Hernández, A. G.</creatorcontrib><creatorcontrib>Gomez-Fuentes, R.</creatorcontrib><creatorcontrib>Berman-Mendoza, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Carrazco, A.</au><au>Gallardo-Cubedo, J. A.</au><au>Vera-Marquina, A.</au><au>Leal-Cruz, A. L.</au><au>Noriega, J. R.</au><au>Zuñiga-Islas, C.</au><au>Rojas-Hernández, A. G.</au><au>Gomez-Fuentes, R.</au><au>Berman-Mendoza, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>50</volume><issue>9</issue><spage>5196</spage><epage>5208</epage><pages>5196-5208</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The characterization of zinc oxide (ZnO) films, developed by a home-built chemical vapor deposition (CVD) system, working as an active layer for a
n
-channel depletion mode pseudo-metal-oxide-semiconductor field-effect transistor (MOSFET) is reported. A factorial experimental design was applied to analyze the behavior of the structural, optical, and morphological properties of the ZnO semiconductor. To study the behavior of the assembled equipment, the main parameters of substrate temperature, oxygen flow, and chamber pressure were varied at two levels. The ZnO films were studied by means of the characterization techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, photoluminescence, and cathodoluminescence. SEM images showed that the submicrometric ZnO morphologies were obtained from the interaction of the three growth parameters. XRD analysis exhibited an hexagonal wurtzite structure without the presence of other crystalline phases. The Raman response was analyzed according to the dependence of the oxygen flow, temperature, and growth pressure. The emission obtained under ultraviolet laser excitation showed two strong emissions, at 487 nm and 514 nm. In comparison, cathodoluminescence spectra of the ZnO samples exhibited a dominant transition centered at 380 nm. According to the results of the factorial design, one ZnO sample was selected as the active layer for the development of a pseudo-field effect transistor. The transfer and output characteristics of the device were used to study the threshold voltage, carrier mobility, and transconductance behavior. As a result, this work provides an alternative pathway to the fabrication of a
n
-channel depletion mode ZnO pseudo-transistor using a low-cost and home-built CVD system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-021-09038-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1267-0090</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2021-09, Vol.50 (9), p.5196-5208 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2557305157 |
source | Springer Nature - Complete Springer Journals |
subjects | Carrier mobility Cathodoluminescence Characterization and Evaluation of Materials Chemical vapor deposition Chemistry and Materials Science Depletion Design of experiments Electronics and Microelectronics Factorial design Field effect transistors Instrumentation Materials Science Metal oxide semiconductors Morphology MOSFETs Optical and Electronic Materials Optical properties Original Research Article Parameters Photoluminescence Raman spectroscopy Scanning electron microscopy Semiconductor devices Solid State Physics Spectrum analysis Substrates Threshold voltage Transconductance Transistors Ultraviolet lasers Wurtzite X-ray diffraction Zinc oxide Zinc oxides |
title | Characterization of ZnO Films Grown by Chemical Vapor Deposition as Active Layer in Pseudo-MOSFET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20ZnO%20Films%20Grown%20by%20Chemical%20Vapor%20Deposition%20as%20Active%20Layer%20in%20Pseudo-MOSFET&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Ramos-Carrazco,%20A.&rft.date=2021-09-01&rft.volume=50&rft.issue=9&rft.spage=5196&rft.epage=5208&rft.pages=5196-5208&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-021-09038-9&rft_dat=%3Cproquest_cross%3E2557305157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557305157&rft_id=info:pmid/&rfr_iscdi=true |