A neural circuit for excessive feeding driven by environmental context in mice

Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2021-08, Vol.24 (8), p.1132-1141
Hauptverfasser: Mohammad, Hasan, Senol, Esra, Graf, Martin, Lee, Chun-Yao, Li, Qin, Liu, Qing, Yeo, Xin Yi, Wang, Menghan, Laskaratos, Achilleas, Xu, Fuqiang, Luo, Sarah Xinwei, Jung, Sangyong, Augustine, George J., Fu, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1141
container_issue 8
container_start_page 1132
container_title Nature neuroscience
container_volume 24
creator Mohammad, Hasan
Senol, Esra
Graf, Martin
Lee, Chun-Yao
Li, Qin
Liu, Qing
Yeo, Xin Yi
Wang, Menghan
Laskaratos, Achilleas
Xu, Fuqiang
Luo, Sarah Xinwei
Jung, Sangyong
Augustine, George J.
Fu, Yu
description Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin ( TN SST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TN SST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TN SST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TN SST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding. Tuberal nucleus SST + neurons respond to palatable food. The activity of these SST neurons together with their plastic inputs from the ventral subiculum play critical roles in contextually conditioned feeding.
doi_str_mv 10.1038/s41593-021-00875-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2557304560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670484651</galeid><sourcerecordid>A670484651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-43729cd19ecddd1c1590c7a32963897a6ec3d39f4564e1cecd24bca6c2a34913</originalsourceid><addsrcrecordid>eNqNkltrFDEYhgdRbK3-AS8k4I0iU3PO5HJZPBSKgvY-ZDPfLCkzSU0yPfx7s87asiIiuciB5_1Ob5rmJcGnBLPufeZEaNZiSlqMOyVa_ag5JoLLligqH9cz1qqVVMij5lnOlxhjJTr9tDlinMiOMX3cfFmhAHOyI3I-udkXNMSE4NZBzv4a0ADQ-7BFfaq3gDZ3CMK1TzFMEMpOFUOB24J8QJN38Lx5Mtgxw4v9ftJcfPxwsf7cnn_9dLZenbeOK1lazhTVricaXN_3xNU-sFOWUS1Zp5WV4FjP9MCF5EBcpSjfOCsdtYxrwk6aN0vYqxR_zJCLmXx2MI42QJyzoYKLOhquu4q-_gO9jHMKtbhKCcVwzYEfqK0dwfgwxJKs2wU1K6kw77gUu7Snf6Hq6qE2HwMMvr4fCN4eCPbT2to5Z3P2_dshSxfWpZhzgsFcJT_ZdGcINju_zeK3qX6bX34bXUWv9t3Nmwn6e8lvgyvwbgFuYBOH7DwEB_dY_RFSCqkprydMK939P732xRYfwzrOoVQpW6S54mEL6WHO_6j_J5Eg020</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557304560</pqid></control><display><type>article</type><title>A neural circuit for excessive feeding driven by environmental context in mice</title><source>MEDLINE</source><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Mohammad, Hasan ; Senol, Esra ; Graf, Martin ; Lee, Chun-Yao ; Li, Qin ; Liu, Qing ; Yeo, Xin Yi ; Wang, Menghan ; Laskaratos, Achilleas ; Xu, Fuqiang ; Luo, Sarah Xinwei ; Jung, Sangyong ; Augustine, George J. ; Fu, Yu</creator><creatorcontrib>Mohammad, Hasan ; Senol, Esra ; Graf, Martin ; Lee, Chun-Yao ; Li, Qin ; Liu, Qing ; Yeo, Xin Yi ; Wang, Menghan ; Laskaratos, Achilleas ; Xu, Fuqiang ; Luo, Sarah Xinwei ; Jung, Sangyong ; Augustine, George J. ; Fu, Yu</creatorcontrib><description>Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin ( TN SST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TN SST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TN SST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TN SST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding. Tuberal nucleus SST + neurons respond to palatable food. The activity of these SST neurons together with their plastic inputs from the ventral subiculum play critical roles in contextually conditioned feeding.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-021-00875-9</identifier><identifier>PMID: 34168339</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1488/1562 ; 631/378/3920 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain research ; Circuits ; Cognitive ability ; Context ; Cues ; Environmental factors ; Feeding ; Feeding Behavior - physiology ; Food ; Food habits ; Hippocampus ; Hypothalamus ; Hypothalamus - physiology ; Life Sciences &amp; Biomedicine ; Male ; Mice ; Neural circuitry ; Neural Pathways - physiology ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Neurosciences &amp; Neurology ; Obesity ; Physiological aspects ; Physiological effects ; Physiology ; Psychological aspects ; Science &amp; Technology ; Somatostatin ; Somatostatin - metabolism ; Subiculum ; Synaptic transmission</subject><ispartof>Nature neuroscience, 2021-08, Vol.24 (8), p.1132-1141</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000665692400002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c476t-43729cd19ecddd1c1590c7a32963897a6ec3d39f4564e1cecd24bca6c2a34913</citedby><cites>FETCH-LOGICAL-c476t-43729cd19ecddd1c1590c7a32963897a6ec3d39f4564e1cecd24bca6c2a34913</cites><orcidid>0000-0003-1546-4564 ; 0000-0001-7408-7485 ; 0000-0003-4878-0520 ; 0000-0002-5309-4034 ; 0000-0002-2456-5781 ; 0000-0002-9226-1982 ; 0000-0001-9859-1184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,39265</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34168339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammad, Hasan</creatorcontrib><creatorcontrib>Senol, Esra</creatorcontrib><creatorcontrib>Graf, Martin</creatorcontrib><creatorcontrib>Lee, Chun-Yao</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Yeo, Xin Yi</creatorcontrib><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Laskaratos, Achilleas</creatorcontrib><creatorcontrib>Xu, Fuqiang</creatorcontrib><creatorcontrib>Luo, Sarah Xinwei</creatorcontrib><creatorcontrib>Jung, Sangyong</creatorcontrib><creatorcontrib>Augustine, George J.</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><title>A neural circuit for excessive feeding driven by environmental context in mice</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>NAT NEUROSCI</addtitle><addtitle>Nat Neurosci</addtitle><description>Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin ( TN SST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TN SST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TN SST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TN SST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding. Tuberal nucleus SST + neurons respond to palatable food. The activity of these SST neurons together with their plastic inputs from the ventral subiculum play critical roles in contextually conditioned feeding.</description><subject>631/378/1488/1562</subject><subject>631/378/3920</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Circuits</subject><subject>Cognitive ability</subject><subject>Context</subject><subject>Cues</subject><subject>Environmental factors</subject><subject>Feeding</subject><subject>Feeding Behavior - physiology</subject><subject>Food</subject><subject>Food habits</subject><subject>Hippocampus</subject><subject>Hypothalamus</subject><subject>Hypothalamus - physiology</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Male</subject><subject>Mice</subject><subject>Neural circuitry</subject><subject>Neural Pathways - physiology</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Obesity</subject><subject>Physiological aspects</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Psychological aspects</subject><subject>Science &amp; Technology</subject><subject>Somatostatin</subject><subject>Somatostatin - metabolism</subject><subject>Subiculum</subject><subject>Synaptic transmission</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkltrFDEYhgdRbK3-AS8k4I0iU3PO5HJZPBSKgvY-ZDPfLCkzSU0yPfx7s87asiIiuciB5_1Ob5rmJcGnBLPufeZEaNZiSlqMOyVa_ag5JoLLligqH9cz1qqVVMij5lnOlxhjJTr9tDlinMiOMX3cfFmhAHOyI3I-udkXNMSE4NZBzv4a0ADQ-7BFfaq3gDZ3CMK1TzFMEMpOFUOB24J8QJN38Lx5Mtgxw4v9ftJcfPxwsf7cnn_9dLZenbeOK1lazhTVricaXN_3xNU-sFOWUS1Zp5WV4FjP9MCF5EBcpSjfOCsdtYxrwk6aN0vYqxR_zJCLmXx2MI42QJyzoYKLOhquu4q-_gO9jHMKtbhKCcVwzYEfqK0dwfgwxJKs2wU1K6kw77gUu7Snf6Hq6qE2HwMMvr4fCN4eCPbT2to5Z3P2_dshSxfWpZhzgsFcJT_ZdGcINju_zeK3qX6bX34bXUWv9t3Nmwn6e8lvgyvwbgFuYBOH7DwEB_dY_RFSCqkprydMK939P732xRYfwzrOoVQpW6S54mEL6WHO_6j_J5Eg020</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Mohammad, Hasan</creator><creator>Senol, Esra</creator><creator>Graf, Martin</creator><creator>Lee, Chun-Yao</creator><creator>Li, Qin</creator><creator>Liu, Qing</creator><creator>Yeo, Xin Yi</creator><creator>Wang, Menghan</creator><creator>Laskaratos, Achilleas</creator><creator>Xu, Fuqiang</creator><creator>Luo, Sarah Xinwei</creator><creator>Jung, Sangyong</creator><creator>Augustine, George J.</creator><creator>Fu, Yu</creator><general>Nature Publishing Group US</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1546-4564</orcidid><orcidid>https://orcid.org/0000-0001-7408-7485</orcidid><orcidid>https://orcid.org/0000-0003-4878-0520</orcidid><orcidid>https://orcid.org/0000-0002-5309-4034</orcidid><orcidid>https://orcid.org/0000-0002-2456-5781</orcidid><orcidid>https://orcid.org/0000-0002-9226-1982</orcidid><orcidid>https://orcid.org/0000-0001-9859-1184</orcidid></search><sort><creationdate>20210801</creationdate><title>A neural circuit for excessive feeding driven by environmental context in mice</title><author>Mohammad, Hasan ; Senol, Esra ; Graf, Martin ; Lee, Chun-Yao ; Li, Qin ; Liu, Qing ; Yeo, Xin Yi ; Wang, Menghan ; Laskaratos, Achilleas ; Xu, Fuqiang ; Luo, Sarah Xinwei ; Jung, Sangyong ; Augustine, George J. ; Fu, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-43729cd19ecddd1c1590c7a32963897a6ec3d39f4564e1cecd24bca6c2a34913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378/1488/1562</topic><topic>631/378/3920</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Circuits</topic><topic>Cognitive ability</topic><topic>Context</topic><topic>Cues</topic><topic>Environmental factors</topic><topic>Feeding</topic><topic>Feeding Behavior - physiology</topic><topic>Food</topic><topic>Food habits</topic><topic>Hippocampus</topic><topic>Hypothalamus</topic><topic>Hypothalamus - physiology</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Male</topic><topic>Mice</topic><topic>Neural circuitry</topic><topic>Neural Pathways - physiology</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Obesity</topic><topic>Physiological aspects</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Psychological aspects</topic><topic>Science &amp; Technology</topic><topic>Somatostatin</topic><topic>Somatostatin - metabolism</topic><topic>Subiculum</topic><topic>Synaptic transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammad, Hasan</creatorcontrib><creatorcontrib>Senol, Esra</creatorcontrib><creatorcontrib>Graf, Martin</creatorcontrib><creatorcontrib>Lee, Chun-Yao</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Yeo, Xin Yi</creatorcontrib><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Laskaratos, Achilleas</creatorcontrib><creatorcontrib>Xu, Fuqiang</creatorcontrib><creatorcontrib>Luo, Sarah Xinwei</creatorcontrib><creatorcontrib>Jung, Sangyong</creatorcontrib><creatorcontrib>Augustine, George J.</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad, Hasan</au><au>Senol, Esra</au><au>Graf, Martin</au><au>Lee, Chun-Yao</au><au>Li, Qin</au><au>Liu, Qing</au><au>Yeo, Xin Yi</au><au>Wang, Menghan</au><au>Laskaratos, Achilleas</au><au>Xu, Fuqiang</au><au>Luo, Sarah Xinwei</au><au>Jung, Sangyong</au><au>Augustine, George J.</au><au>Fu, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural circuit for excessive feeding driven by environmental context in mice</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><stitle>NAT NEUROSCI</stitle><addtitle>Nat Neurosci</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>24</volume><issue>8</issue><spage>1132</spage><epage>1141</epage><pages>1132-1141</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin ( TN SST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TN SST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TN SST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TN SST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding. Tuberal nucleus SST + neurons respond to palatable food. The activity of these SST neurons together with their plastic inputs from the ventral subiculum play critical roles in contextually conditioned feeding.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34168339</pmid><doi>10.1038/s41593-021-00875-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1546-4564</orcidid><orcidid>https://orcid.org/0000-0001-7408-7485</orcidid><orcidid>https://orcid.org/0000-0003-4878-0520</orcidid><orcidid>https://orcid.org/0000-0002-5309-4034</orcidid><orcidid>https://orcid.org/0000-0002-2456-5781</orcidid><orcidid>https://orcid.org/0000-0002-9226-1982</orcidid><orcidid>https://orcid.org/0000-0001-9859-1184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2021-08, Vol.24 (8), p.1132-1141
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_journals_2557304560
source MEDLINE; Nature; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 631/378/1488/1562
631/378/3920
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain research
Circuits
Cognitive ability
Context
Cues
Environmental factors
Feeding
Feeding Behavior - physiology
Food
Food habits
Hippocampus
Hypothalamus
Hypothalamus - physiology
Life Sciences & Biomedicine
Male
Mice
Neural circuitry
Neural Pathways - physiology
Neurobiology
Neurons
Neurons - physiology
Neurosciences
Neurosciences & Neurology
Obesity
Physiological aspects
Physiological effects
Physiology
Psychological aspects
Science & Technology
Somatostatin
Somatostatin - metabolism
Subiculum
Synaptic transmission
title A neural circuit for excessive feeding driven by environmental context in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T12%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20circuit%20for%20excessive%20feeding%20driven%20by%20environmental%20context%20in%20mice&rft.jtitle=Nature%20neuroscience&rft.au=Mohammad,%20Hasan&rft.date=2021-08-01&rft.volume=24&rft.issue=8&rft.spage=1132&rft.epage=1141&rft.pages=1132-1141&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-021-00875-9&rft_dat=%3Cgale_proqu%3EA670484651%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557304560&rft_id=info:pmid/34168339&rft_galeid=A670484651&rfr_iscdi=true