Distributed Event- and Self-Triggered Coverage Control with Speed Constrained Unicycle Robots

Voronoi coverage control is a particular problem of importance in the area of multi-robot systems, which considers a network of multiple autonomous robots, tasked with optimally covering a large area. This is a common task for fleets of fixed-wing Unmanned Aerial Vehicles (UAVs), which are described...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Zhou, Yuni, Kong, Lingxuan, Sosnowski, Stefan, Liu, Qingchen, Hirche, Sandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhou, Yuni
Kong, Lingxuan
Sosnowski, Stefan
Liu, Qingchen
Hirche, Sandra
description Voronoi coverage control is a particular problem of importance in the area of multi-robot systems, which considers a network of multiple autonomous robots, tasked with optimally covering a large area. This is a common task for fleets of fixed-wing Unmanned Aerial Vehicles (UAVs), which are described in this work by a unicycle model with constant forward-speed constraints. We develop event-based control/communication algorithms to relax the resource requirements on wireless communication and control actuators, an important feature for battery-driven or otherwise energy-constrained systems. To overcome the drawback that the event-triggered algorithm requires continuous measurement of system states, we propose a self-triggered algorithm to estimate the next triggering time. Hardware experiments illustrate the theoretical results.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2557303196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557303196</sourcerecordid><originalsourceid>FETCH-proquest_journals_25573031963</originalsourceid><addsrcrecordid>eNqNjtEKgjAYhUcQJOU7DLoW5pZa12Z0nXUZMvXXJmOzbRq9fSN6gK7OB9_hcBYooIzF0X5H6QqF1g6EEJpmNElYgO5HYZ0R9eSgxcUMykWYqxaXILvoakTfg_Em1zMY3oMH5YyW-CXcA5cjfJ3yE1wozzclmncjAV90rZ3doGXHpYXwl2u0PRXX_ByNRj8nsK4a9GSUV5W_kzHC4kPK_mt9AOauQ5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557303196</pqid></control><display><type>article</type><title>Distributed Event- and Self-Triggered Coverage Control with Speed Constrained Unicycle Robots</title><source>Free E- Journals</source><creator>Zhou, Yuni ; Kong, Lingxuan ; Sosnowski, Stefan ; Liu, Qingchen ; Hirche, Sandra</creator><creatorcontrib>Zhou, Yuni ; Kong, Lingxuan ; Sosnowski, Stefan ; Liu, Qingchen ; Hirche, Sandra</creatorcontrib><description>Voronoi coverage control is a particular problem of importance in the area of multi-robot systems, which considers a network of multiple autonomous robots, tasked with optimally covering a large area. This is a common task for fleets of fixed-wing Unmanned Aerial Vehicles (UAVs), which are described in this work by a unicycle model with constant forward-speed constraints. We develop event-based control/communication algorithms to relax the resource requirements on wireless communication and control actuators, an important feature for battery-driven or otherwise energy-constrained systems. To overcome the drawback that the event-triggered algorithm requires continuous measurement of system states, we propose a self-triggered algorithm to estimate the next triggering time. Hardware experiments illustrate the theoretical results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Algorithms ; Constraint modelling ; Multiple robots ; Robot control ; Unmanned aerial vehicles ; Wireless communications</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zhou, Yuni</creatorcontrib><creatorcontrib>Kong, Lingxuan</creatorcontrib><creatorcontrib>Sosnowski, Stefan</creatorcontrib><creatorcontrib>Liu, Qingchen</creatorcontrib><creatorcontrib>Hirche, Sandra</creatorcontrib><title>Distributed Event- and Self-Triggered Coverage Control with Speed Constrained Unicycle Robots</title><title>arXiv.org</title><description>Voronoi coverage control is a particular problem of importance in the area of multi-robot systems, which considers a network of multiple autonomous robots, tasked with optimally covering a large area. This is a common task for fleets of fixed-wing Unmanned Aerial Vehicles (UAVs), which are described in this work by a unicycle model with constant forward-speed constraints. We develop event-based control/communication algorithms to relax the resource requirements on wireless communication and control actuators, an important feature for battery-driven or otherwise energy-constrained systems. To overcome the drawback that the event-triggered algorithm requires continuous measurement of system states, we propose a self-triggered algorithm to estimate the next triggering time. Hardware experiments illustrate the theoretical results.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Constraint modelling</subject><subject>Multiple robots</subject><subject>Robot control</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjtEKgjAYhUcQJOU7DLoW5pZa12Z0nXUZMvXXJmOzbRq9fSN6gK7OB9_hcBYooIzF0X5H6QqF1g6EEJpmNElYgO5HYZ0R9eSgxcUMykWYqxaXILvoakTfg_Em1zMY3oMH5YyW-CXcA5cjfJ3yE1wozzclmncjAV90rZ3doGXHpYXwl2u0PRXX_ByNRj8nsK4a9GSUV5W_kzHC4kPK_mt9AOauQ5Y</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Zhou, Yuni</creator><creator>Kong, Lingxuan</creator><creator>Sosnowski, Stefan</creator><creator>Liu, Qingchen</creator><creator>Hirche, Sandra</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210730</creationdate><title>Distributed Event- and Self-Triggered Coverage Control with Speed Constrained Unicycle Robots</title><author>Zhou, Yuni ; Kong, Lingxuan ; Sosnowski, Stefan ; Liu, Qingchen ; Hirche, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25573031963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Constraint modelling</topic><topic>Multiple robots</topic><topic>Robot control</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yuni</creatorcontrib><creatorcontrib>Kong, Lingxuan</creatorcontrib><creatorcontrib>Sosnowski, Stefan</creatorcontrib><creatorcontrib>Liu, Qingchen</creatorcontrib><creatorcontrib>Hirche, Sandra</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yuni</au><au>Kong, Lingxuan</au><au>Sosnowski, Stefan</au><au>Liu, Qingchen</au><au>Hirche, Sandra</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Distributed Event- and Self-Triggered Coverage Control with Speed Constrained Unicycle Robots</atitle><jtitle>arXiv.org</jtitle><date>2021-07-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Voronoi coverage control is a particular problem of importance in the area of multi-robot systems, which considers a network of multiple autonomous robots, tasked with optimally covering a large area. This is a common task for fleets of fixed-wing Unmanned Aerial Vehicles (UAVs), which are described in this work by a unicycle model with constant forward-speed constraints. We develop event-based control/communication algorithms to relax the resource requirements on wireless communication and control actuators, an important feature for battery-driven or otherwise energy-constrained systems. To overcome the drawback that the event-triggered algorithm requires continuous measurement of system states, we propose a self-triggered algorithm to estimate the next triggering time. Hardware experiments illustrate the theoretical results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2557303196
source Free E- Journals
subjects Actuators
Algorithms
Constraint modelling
Multiple robots
Robot control
Unmanned aerial vehicles
Wireless communications
title Distributed Event- and Self-Triggered Coverage Control with Speed Constrained Unicycle Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Distributed%20Event-%20and%20Self-Triggered%20Coverage%20Control%20with%20Speed%20Constrained%20Unicycle%20Robots&rft.jtitle=arXiv.org&rft.au=Zhou,%20Yuni&rft.date=2021-07-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2557303196%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557303196&rft_id=info:pmid/&rfr_iscdi=true