PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization
To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally e...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2021/08/01, Vol.E104.D(8), pp.1138-1145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1145 |
---|---|
container_issue | 8 |
container_start_page | 1138 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E104.D |
creator | IIJIMA, Yosuke TAYA, Keigo YUMINAKA, Yasushi |
description | To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it is more sensitive than conventional non-return-to-zero line coding. To evaluate the received signal quality when using adaptive coefficient settings for a PAM-4 equalizer during data transmission, we propose an eye-opening monitor technique based on machine learning. The proposed technique uses a Gaussian mixture model to classify the received PAM-4 symbols. Simulation and experimental results demonstrate the feasibility of adaptive equalization for PAM-4 coding. |
doi_str_mv | 10.1587/transinf.2020LOP0007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557270780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557270780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-676bac23f9f85bbd98c53e227351141934955ecde910108ff9772c9c2aea15993</originalsourceid><addsrcrecordid>eNpNkFFPwjAQxxujiYh-Ax-W-Dztdeu6PhKcaAKBGHjxpSmlgxLsRtsZ8dM7giBPd7n8fneXP0L3gB-B5uwpOGm9seUjwQQPxxOMMbtAHWApjSHJ4BJ1MIcszmlCrtGN92uMISdAO-hj0hvFaVTsdDyutTV2GY0qa0LloqlWK2u2jY5mfj8fyMZ7I200Mt-hcboFF3oTlS3aW8g6mC8dFdtGbsyPDKayt-iqlBuv7_5qF81eimn_NR6OB2_93jBWFLIQZyybS0WSkpc5nc8XPFc00YSwhAKkwJOUU6rVQnPAgPOy5IwRxRWRWgLlPOmih8Pe2lXttz6IddU4254UhFJGGGY5bqn0QClXee90KWpnPqXbCcBin6I4pijOUmy194O29kEu9UmSLhi10f9SATgVzyI_NmdLTrBaSSe0TX4BRPuEOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557270780</pqid></control><display><type>article</type><title>PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>IIJIMA, Yosuke ; TAYA, Keigo ; YUMINAKA, Yasushi</creator><creatorcontrib>IIJIMA, Yosuke ; TAYA, Keigo ; YUMINAKA, Yasushi</creatorcontrib><description>To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it is more sensitive than conventional non-return-to-zero line coding. To evaluate the received signal quality when using adaptive coefficient settings for a PAM-4 equalizer during data transmission, we propose an eye-opening monitor technique based on machine learning. The proposed technique uses a Gaussian mixture model to classify the received PAM-4 symbols. Simulation and experimental results demonstrate the feasibility of adaptive equalization for PAM-4 coding.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2020LOP0007</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Coding ; Data transmission ; Equalization ; eye-opening monitor ; Gaussian mixture model ; High speed ; Integrated circuits ; Machine learning ; multi-valued signaling ; PAM-4 ; Probabilistic models ; Pulse amplitude modulation ; Signal quality ; Very large scale integration</subject><ispartof>IEICE Transactions on Information and Systems, 2021/08/01, Vol.E104.D(8), pp.1138-1145</ispartof><rights>2021 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c516t-676bac23f9f85bbd98c53e227351141934955ecde910108ff9772c9c2aea15993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27903,27904</link.rule.ids></links><search><creatorcontrib>IIJIMA, Yosuke</creatorcontrib><creatorcontrib>TAYA, Keigo</creatorcontrib><creatorcontrib>YUMINAKA, Yasushi</creatorcontrib><title>PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it is more sensitive than conventional non-return-to-zero line coding. To evaluate the received signal quality when using adaptive coefficient settings for a PAM-4 equalizer during data transmission, we propose an eye-opening monitor technique based on machine learning. The proposed technique uses a Gaussian mixture model to classify the received PAM-4 symbols. Simulation and experimental results demonstrate the feasibility of adaptive equalization for PAM-4 coding.</description><subject>Coding</subject><subject>Data transmission</subject><subject>Equalization</subject><subject>eye-opening monitor</subject><subject>Gaussian mixture model</subject><subject>High speed</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>multi-valued signaling</subject><subject>PAM-4</subject><subject>Probabilistic models</subject><subject>Pulse amplitude modulation</subject><subject>Signal quality</subject><subject>Very large scale integration</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkFFPwjAQxxujiYh-Ax-W-Dztdeu6PhKcaAKBGHjxpSmlgxLsRtsZ8dM7giBPd7n8fneXP0L3gB-B5uwpOGm9seUjwQQPxxOMMbtAHWApjSHJ4BJ1MIcszmlCrtGN92uMISdAO-hj0hvFaVTsdDyutTV2GY0qa0LloqlWK2u2jY5mfj8fyMZ7I200Mt-hcboFF3oTlS3aW8g6mC8dFdtGbsyPDKayt-iqlBuv7_5qF81eimn_NR6OB2_93jBWFLIQZyybS0WSkpc5nc8XPFc00YSwhAKkwJOUU6rVQnPAgPOy5IwRxRWRWgLlPOmih8Pe2lXttz6IddU4254UhFJGGGY5bqn0QClXee90KWpnPqXbCcBin6I4pijOUmy194O29kEu9UmSLhi10f9SATgVzyI_NmdLTrBaSSe0TX4BRPuEOA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>IIJIMA, Yosuke</creator><creator>TAYA, Keigo</creator><creator>YUMINAKA, Yasushi</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210801</creationdate><title>PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization</title><author>IIJIMA, Yosuke ; TAYA, Keigo ; YUMINAKA, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-676bac23f9f85bbd98c53e227351141934955ecde910108ff9772c9c2aea15993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coding</topic><topic>Data transmission</topic><topic>Equalization</topic><topic>eye-opening monitor</topic><topic>Gaussian mixture model</topic><topic>High speed</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>multi-valued signaling</topic><topic>PAM-4</topic><topic>Probabilistic models</topic><topic>Pulse amplitude modulation</topic><topic>Signal quality</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>IIJIMA, Yosuke</creatorcontrib><creatorcontrib>TAYA, Keigo</creatorcontrib><creatorcontrib>YUMINAKA, Yasushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>IIJIMA, Yosuke</au><au>TAYA, Keigo</au><au>YUMINAKA, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>E104.D</volume><issue>8</issue><spage>1138</spage><epage>1145</epage><pages>1138-1145</pages><artnum>2020LOP0007</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it is more sensitive than conventional non-return-to-zero line coding. To evaluate the received signal quality when using adaptive coefficient settings for a PAM-4 equalizer during data transmission, we propose an eye-opening monitor technique based on machine learning. The proposed technique uses a Gaussian mixture model to classify the received PAM-4 symbols. Simulation and experimental results demonstrate the feasibility of adaptive equalization for PAM-4 coding.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2020LOP0007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2021/08/01, Vol.E104.D(8), pp.1138-1145 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2557270780 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Coding Data transmission Equalization eye-opening monitor Gaussian mixture model High speed Integrated circuits Machine learning multi-valued signaling PAM-4 Probabilistic models Pulse amplitude modulation Signal quality Very large scale integration |
title | PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PAM-4%20Eye-Opening%20Monitor%20Technique%20Using%20Gaussian%20Mixture%20Model%20for%20Adaptive%20Equalization&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=IIJIMA,%20Yosuke&rft.date=2021-08-01&rft.volume=E104.D&rft.issue=8&rft.spage=1138&rft.epage=1145&rft.pages=1138-1145&rft.artnum=2020LOP0007&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2020LOP0007&rft_dat=%3Cproquest_cross%3E2557270780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557270780&rft_id=info:pmid/&rfr_iscdi=true |