An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method
Accurate and automatic quantitative cephalometry analysis is of great importance in orthodontics. The fundamental step for cephalometry analysis is to annotate anatomic-interested landmarks on X-ray images. Computer-aided automatic method remains to be an open topic nowadays. In this paper, we propo...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2021/08/01, Vol.E104.D(8), pp.1359-1366 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1366 |
---|---|
container_issue | 8 |
container_start_page | 1359 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E104.D |
creator | SONG, Yu QIAO, Xu IWAMOTO, Yutaro CHEN, Yen-Wei CHEN, Yili |
description | Accurate and automatic quantitative cephalometry analysis is of great importance in orthodontics. The fundamental step for cephalometry analysis is to annotate anatomic-interested landmarks on X-ray images. Computer-aided automatic method remains to be an open topic nowadays. In this paper, we propose an efficient deep learning-based coarse-to-fine approach to realize accurate landmark detection. In the coarse detection step, we train a deep learning-based deformable transformation model by using training samples. We register test images to the reference image (one training image) using the trained model to predict coarse landmarks' locations on test images. Thus, regions of interest (ROIs) which include landmarks can be located. In the fine detection step, we utilize trained deep convolutional neural networks (CNNs), to detect landmarks in ROI patches. For each landmark, there is one corresponding neural network, which directly does regression to the landmark's coordinates. The fine step can be considered as a refinement or fine-tuning step based on the coarse detection step. We validated the proposed method on public dataset from 2015 International Symposium on Biomedical Imaging (ISBI) grand challenge. Compared with the state-of-the-art method, we not only achieved the comparable detection accuracy (the mean radial error is about 1.0-1.6mm), but also largely shortened the computation time (4 seconds per image). |
doi_str_mv | 10.1587/transinf.2021EDP7001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557270234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557270234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-b99781ba19b201dfe6d1cda6818077d8ac16c25ceb82d338238ab4027e5431293</originalsourceid><addsrcrecordid>eNqNkE1rGzEQhkVIoU7af9DDQo5lE420WmmPydpJCi4tpaVHodXOxnIcyZVkQv99ZZyvY08zh-eZeXkJ-QT0HISSFzkan5yfzhllsJh_l5TCEZmBbEQNvIVjMqMdtLUSnL0nJymtC6AYiBn5femrxTQ569Dnao64rZZoonf-rroyCceqDyYmrHOor53HqsftymzCA-bobLU0fnww8b6YGW12wVdfMa_C-IG8m8wm4ceneUp-XS9-9rf18tvNl_5yWVvRylwPXScVDAa6gVEYJ2xHsKNpFSgq5aiMhdYyYXFQbORcMa7M0FAmUTQcWMdPydnh7jaGPztMWa_DLvryUjMhJJOU8aZQzYGyMaQUcdLb6Eruvxqo3leonyvUbyosmjpojziEKe07sviiUkpbRUHItmxc9C6bfQF92Plc1M__rxb6x4Fep2zuXjkTs7MbfE23ANrouVbPy5u0L7BdmajR83_6sKNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557270234</pqid></control><display><type>article</type><title>An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>SONG, Yu ; QIAO, Xu ; IWAMOTO, Yutaro ; CHEN, Yen-Wei ; CHEN, Yili</creator><creatorcontrib>SONG, Yu ; QIAO, Xu ; IWAMOTO, Yutaro ; CHEN, Yen-Wei ; CHEN, Yili</creatorcontrib><description>Accurate and automatic quantitative cephalometry analysis is of great importance in orthodontics. The fundamental step for cephalometry analysis is to annotate anatomic-interested landmarks on X-ray images. Computer-aided automatic method remains to be an open topic nowadays. In this paper, we propose an efficient deep learning-based coarse-to-fine approach to realize accurate landmark detection. In the coarse detection step, we train a deep learning-based deformable transformation model by using training samples. We register test images to the reference image (one training image) using the trained model to predict coarse landmarks' locations on test images. Thus, regions of interest (ROIs) which include landmarks can be located. In the fine detection step, we utilize trained deep convolutional neural networks (CNNs), to detect landmarks in ROI patches. For each landmark, there is one corresponding neural network, which directly does regression to the landmark's coordinates. The fine step can be considered as a refinement or fine-tuning step based on the coarse detection step. We validated the proposed method on public dataset from 2015 International Symposium on Biomedical Imaging (ISBI) grand challenge. Compared with the state-of-the-art method, we not only achieved the comparable detection accuracy (the mean radial error is about 1.0-1.6mm), but also largely shortened the computation time (4 seconds per image).</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2021EDP7001</identifier><language>eng</language><publisher>TOKYO: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Artificial neural networks ; cephalometric landmark ; Computer Science ; Computer Science, Information Systems ; Computer Science, Software Engineering ; Deep learning ; deformable transformation ; Formability ; Medical imaging ; Neural networks ; Orthodontics ; registration ; Science & Technology ; Technology ; Training ; x-ray</subject><ispartof>IEICE Transactions on Information and Systems, 2021/08/01, Vol.E104.D(8), pp.1359-1366</ispartof><rights>2021 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000680157600035</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c567t-b99781ba19b201dfe6d1cda6818077d8ac16c25ceb82d338238ab4027e5431293</citedby><cites>FETCH-LOGICAL-c567t-b99781ba19b201dfe6d1cda6818077d8ac16c25ceb82d338238ab4027e5431293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1884,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>SONG, Yu</creatorcontrib><creatorcontrib>QIAO, Xu</creatorcontrib><creatorcontrib>IWAMOTO, Yutaro</creatorcontrib><creatorcontrib>CHEN, Yen-Wei</creatorcontrib><creatorcontrib>CHEN, Yili</creatorcontrib><title>An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE T INF SYST</addtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Accurate and automatic quantitative cephalometry analysis is of great importance in orthodontics. The fundamental step for cephalometry analysis is to annotate anatomic-interested landmarks on X-ray images. Computer-aided automatic method remains to be an open topic nowadays. In this paper, we propose an efficient deep learning-based coarse-to-fine approach to realize accurate landmark detection. In the coarse detection step, we train a deep learning-based deformable transformation model by using training samples. We register test images to the reference image (one training image) using the trained model to predict coarse landmarks' locations on test images. Thus, regions of interest (ROIs) which include landmarks can be located. In the fine detection step, we utilize trained deep convolutional neural networks (CNNs), to detect landmarks in ROI patches. For each landmark, there is one corresponding neural network, which directly does regression to the landmark's coordinates. The fine step can be considered as a refinement or fine-tuning step based on the coarse detection step. We validated the proposed method on public dataset from 2015 International Symposium on Biomedical Imaging (ISBI) grand challenge. Compared with the state-of-the-art method, we not only achieved the comparable detection accuracy (the mean radial error is about 1.0-1.6mm), but also largely shortened the computation time (4 seconds per image).</description><subject>Artificial neural networks</subject><subject>cephalometric landmark</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer Science, Software Engineering</subject><subject>Deep learning</subject><subject>deformable transformation</subject><subject>Formability</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Orthodontics</subject><subject>registration</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Training</subject><subject>x-ray</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1rGzEQhkVIoU7af9DDQo5lE420WmmPydpJCi4tpaVHodXOxnIcyZVkQv99ZZyvY08zh-eZeXkJ-QT0HISSFzkan5yfzhllsJh_l5TCEZmBbEQNvIVjMqMdtLUSnL0nJymtC6AYiBn5femrxTQ569Dnao64rZZoonf-rroyCceqDyYmrHOor53HqsftymzCA-bobLU0fnww8b6YGW12wVdfMa_C-IG8m8wm4ceneUp-XS9-9rf18tvNl_5yWVvRylwPXScVDAa6gVEYJ2xHsKNpFSgq5aiMhdYyYXFQbORcMa7M0FAmUTQcWMdPydnh7jaGPztMWa_DLvryUjMhJJOU8aZQzYGyMaQUcdLb6Eruvxqo3leonyvUbyosmjpojziEKe07sviiUkpbRUHItmxc9C6bfQF92Plc1M__rxb6x4Fep2zuXjkTs7MbfE23ANrouVbPy5u0L7BdmajR83_6sKNs</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>SONG, Yu</creator><creator>QIAO, Xu</creator><creator>IWAMOTO, Yutaro</creator><creator>CHEN, Yen-Wei</creator><creator>CHEN, Yili</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>IEICE-INST ELECTRONICS INFORMATION COMMUNICATION ENGINEERS</general><general>Japan Science and Technology Agency</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210801</creationdate><title>An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method</title><author>SONG, Yu ; QIAO, Xu ; IWAMOTO, Yutaro ; CHEN, Yen-Wei ; CHEN, Yili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-b99781ba19b201dfe6d1cda6818077d8ac16c25ceb82d338238ab4027e5431293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>cephalometric landmark</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer Science, Software Engineering</topic><topic>Deep learning</topic><topic>deformable transformation</topic><topic>Formability</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Orthodontics</topic><topic>registration</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Training</topic><topic>x-ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SONG, Yu</creatorcontrib><creatorcontrib>QIAO, Xu</creatorcontrib><creatorcontrib>IWAMOTO, Yutaro</creatorcontrib><creatorcontrib>CHEN, Yen-Wei</creatorcontrib><creatorcontrib>CHEN, Yili</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SONG, Yu</au><au>QIAO, Xu</au><au>IWAMOTO, Yutaro</au><au>CHEN, Yen-Wei</au><au>CHEN, Yili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><stitle>IEICE T INF SYST</stitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>E104.D</volume><issue>8</issue><spage>1359</spage><epage>1366</epage><pages>1359-1366</pages><artnum>2021EDP7001</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Accurate and automatic quantitative cephalometry analysis is of great importance in orthodontics. The fundamental step for cephalometry analysis is to annotate anatomic-interested landmarks on X-ray images. Computer-aided automatic method remains to be an open topic nowadays. In this paper, we propose an efficient deep learning-based coarse-to-fine approach to realize accurate landmark detection. In the coarse detection step, we train a deep learning-based deformable transformation model by using training samples. We register test images to the reference image (one training image) using the trained model to predict coarse landmarks' locations on test images. Thus, regions of interest (ROIs) which include landmarks can be located. In the fine detection step, we utilize trained deep convolutional neural networks (CNNs), to detect landmarks in ROI patches. For each landmark, there is one corresponding neural network, which directly does regression to the landmark's coordinates. The fine step can be considered as a refinement or fine-tuning step based on the coarse detection step. We validated the proposed method on public dataset from 2015 International Symposium on Biomedical Imaging (ISBI) grand challenge. Compared with the state-of-the-art method, we not only achieved the comparable detection accuracy (the mean radial error is about 1.0-1.6mm), but also largely shortened the computation time (4 seconds per image).</abstract><cop>TOKYO</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2021EDP7001</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2021/08/01, Vol.E104.D(8), pp.1359-1366 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2557270234 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Artificial neural networks cephalometric landmark Computer Science Computer Science, Information Systems Computer Science, Software Engineering Deep learning deformable transformation Formability Medical imaging Neural networks Orthodontics registration Science & Technology Technology Training x-ray |
title | An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Deep%20Learning%20Based%20Coarse-to-Fine%20Cephalometric%20Landmark%20Detection%20Method&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=SONG,%20Yu&rft.date=2021-08-01&rft.volume=E104.D&rft.issue=8&rft.spage=1359&rft.epage=1366&rft.pages=1359-1366&rft.artnum=2021EDP7001&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2021EDP7001&rft_dat=%3Cproquest_cross%3E2557270234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557270234&rft_id=info:pmid/&rfr_iscdi=true |