Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ
Five transport coefficients of the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66 T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity,...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-07, Vol.104 (1), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 104 |
creator | Lizaire, M Legros, A Gourgout, A Benhabib, S Badoux, S Laliberté, F Boulanger, M-E Ataei, A Grissonnanche, G LeBoeuf, D Licciardello, S Wiedmann, S Ono, S Raffy, H Kawasaki, S Zheng, G-Q Doiron-Leyraud, N Proust, C Taillefer, L |
description | Five transport coefficients of the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66 T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient, and thermal Hall conductivity were measured in two overdoped single crystals, with La concentration x = 0.2 ( Tc = 18 K) and x = 0.0 ( Tc = 10 K). The samples have dopings p very close to the critical doping p ★ where the pseudogap phase ends. The resistivity displays a linear dependence on temperature whose slope is consistent with Planckian dissipation. The Hall number n H decreases with reduced p , consistent with a drop in carrier density from n = 1 + p above p ★ to n = p below p ★ . This drop in n H is concomitant with a sharp drop in the density of states inferred from prior NMR Knight shift measurements. The thermal conductivity satisfies the Wiedemann-Franz law, showing that the pseudogap phase at T = 0 is a metal whose fermionic excitations carry heat and charge as do conventional electrons. The Seebeck coefficient diverges logarithmically at low temperature, a signature of quantum criticality. The thermal Hall conductivity becomes negative at low temperature, showing that phonons are chiral in the pseudogap phase. Given the observation of these same properties in other, very different cuprates, our study provides strong evidence for the universality of these five signatures of the pseudogap phase and its critical point. |
doi_str_mv | 10.1103/PhysRevB.104.014515 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2557259530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557259530</sourcerecordid><originalsourceid>FETCH-proquest_journals_25572595303</originalsourceid><addsrcrecordid>eNqNikFKAzEUQIMoWLQncPPBpXT8yUymZNuiuBAU7b6ENG0zlCT-n0i9gWvP4jk8hCdRRFy7eg_eE-JMYiMltpf32xd-8M-zRmLXoOy01AdipLreTIzpzeGfazwWY-YBEWWPZopmJIYF2cg5UQEOm2hLJc-Q1lC2HjL7ukobm8FRKMHZHeQUYoEQf7qrmWzxwDV7cimuqiuJYBYUPJL6fH3bw63dw7ze9Rcf76fiaG137Me_PBHn11eL-c0kU3qqnstySJXid1oqradKG91i-7_rC0_5UqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557259530</pqid></control><display><type>article</type><title>Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ</title><source>American Physical Society Journals</source><creator>Lizaire, M ; Legros, A ; Gourgout, A ; Benhabib, S ; Badoux, S ; Laliberté, F ; Boulanger, M-E ; Ataei, A ; Grissonnanche, G ; LeBoeuf, D ; Licciardello, S ; Wiedmann, S ; Ono, S ; Raffy, H ; Kawasaki, S ; Zheng, G-Q ; Doiron-Leyraud, N ; Proust, C ; Taillefer, L</creator><creatorcontrib>Lizaire, M ; Legros, A ; Gourgout, A ; Benhabib, S ; Badoux, S ; Laliberté, F ; Boulanger, M-E ; Ataei, A ; Grissonnanche, G ; LeBoeuf, D ; Licciardello, S ; Wiedmann, S ; Ono, S ; Raffy, H ; Kawasaki, S ; Zheng, G-Q ; Doiron-Leyraud, N ; Proust, C ; Taillefer, L</creatorcontrib><description>Five transport coefficients of the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66 T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient, and thermal Hall conductivity were measured in two overdoped single crystals, with La concentration x = 0.2 ( Tc = 18 K) and x = 0.0 ( Tc = 10 K). The samples have dopings p very close to the critical doping p ★ where the pseudogap phase ends. The resistivity displays a linear dependence on temperature whose slope is consistent with Planckian dissipation. The Hall number n H decreases with reduced p , consistent with a drop in carrier density from n = 1 + p above p ★ to n = p below p ★ . This drop in n H is concomitant with a sharp drop in the density of states inferred from prior NMR Knight shift measurements. The thermal conductivity satisfies the Wiedemann-Franz law, showing that the pseudogap phase at T = 0 is a metal whose fermionic excitations carry heat and charge as do conventional electrons. The Seebeck coefficient diverges logarithmically at low temperature, a signature of quantum criticality. The thermal Hall conductivity becomes negative at low temperature, showing that phonons are chiral in the pseudogap phase. Given the observation of these same properties in other, very different cuprates, our study provides strong evidence for the universality of these five signatures of the pseudogap phase and its critical point.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.014515</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Carrier density ; Critical point ; Cuprates ; Current carriers ; Electrical resistivity ; Hall effect ; Heat conductivity ; Heat transfer ; Lorenz number ; Low temperature ; NMR ; Nuclear magnetic resonance ; Seebeck effect ; Signatures ; Single crystals ; Superconductivity ; Temperature dependence ; Thermal conductivity ; Transport properties</subject><ispartof>Physical review. B, 2021-07, Vol.104 (1), p.1</ispartof><rights>Copyright American Physical Society Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lizaire, M</creatorcontrib><creatorcontrib>Legros, A</creatorcontrib><creatorcontrib>Gourgout, A</creatorcontrib><creatorcontrib>Benhabib, S</creatorcontrib><creatorcontrib>Badoux, S</creatorcontrib><creatorcontrib>Laliberté, F</creatorcontrib><creatorcontrib>Boulanger, M-E</creatorcontrib><creatorcontrib>Ataei, A</creatorcontrib><creatorcontrib>Grissonnanche, G</creatorcontrib><creatorcontrib>LeBoeuf, D</creatorcontrib><creatorcontrib>Licciardello, S</creatorcontrib><creatorcontrib>Wiedmann, S</creatorcontrib><creatorcontrib>Ono, S</creatorcontrib><creatorcontrib>Raffy, H</creatorcontrib><creatorcontrib>Kawasaki, S</creatorcontrib><creatorcontrib>Zheng, G-Q</creatorcontrib><creatorcontrib>Doiron-Leyraud, N</creatorcontrib><creatorcontrib>Proust, C</creatorcontrib><creatorcontrib>Taillefer, L</creatorcontrib><title>Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ</title><title>Physical review. B</title><description>Five transport coefficients of the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66 T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient, and thermal Hall conductivity were measured in two overdoped single crystals, with La concentration x = 0.2 ( Tc = 18 K) and x = 0.0 ( Tc = 10 K). The samples have dopings p very close to the critical doping p ★ where the pseudogap phase ends. The resistivity displays a linear dependence on temperature whose slope is consistent with Planckian dissipation. The Hall number n H decreases with reduced p , consistent with a drop in carrier density from n = 1 + p above p ★ to n = p below p ★ . This drop in n H is concomitant with a sharp drop in the density of states inferred from prior NMR Knight shift measurements. The thermal conductivity satisfies the Wiedemann-Franz law, showing that the pseudogap phase at T = 0 is a metal whose fermionic excitations carry heat and charge as do conventional electrons. The Seebeck coefficient diverges logarithmically at low temperature, a signature of quantum criticality. The thermal Hall conductivity becomes negative at low temperature, showing that phonons are chiral in the pseudogap phase. Given the observation of these same properties in other, very different cuprates, our study provides strong evidence for the universality of these five signatures of the pseudogap phase and its critical point.</description><subject>Carrier density</subject><subject>Critical point</subject><subject>Cuprates</subject><subject>Current carriers</subject><subject>Electrical resistivity</subject><subject>Hall effect</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lorenz number</subject><subject>Low temperature</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Seebeck effect</subject><subject>Signatures</subject><subject>Single crystals</subject><subject>Superconductivity</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNikFKAzEUQIMoWLQncPPBpXT8yUymZNuiuBAU7b6ENG0zlCT-n0i9gWvP4jk8hCdRRFy7eg_eE-JMYiMltpf32xd-8M-zRmLXoOy01AdipLreTIzpzeGfazwWY-YBEWWPZopmJIYF2cg5UQEOm2hLJc-Q1lC2HjL7ukobm8FRKMHZHeQUYoEQf7qrmWzxwDV7cimuqiuJYBYUPJL6fH3bw63dw7ze9Rcf76fiaG137Me_PBHn11eL-c0kU3qqnstySJXid1oqradKG91i-7_rC0_5UqQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Lizaire, M</creator><creator>Legros, A</creator><creator>Gourgout, A</creator><creator>Benhabib, S</creator><creator>Badoux, S</creator><creator>Laliberté, F</creator><creator>Boulanger, M-E</creator><creator>Ataei, A</creator><creator>Grissonnanche, G</creator><creator>LeBoeuf, D</creator><creator>Licciardello, S</creator><creator>Wiedmann, S</creator><creator>Ono, S</creator><creator>Raffy, H</creator><creator>Kawasaki, S</creator><creator>Zheng, G-Q</creator><creator>Doiron-Leyraud, N</creator><creator>Proust, C</creator><creator>Taillefer, L</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210701</creationdate><title>Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ</title><author>Lizaire, M ; Legros, A ; Gourgout, A ; Benhabib, S ; Badoux, S ; Laliberté, F ; Boulanger, M-E ; Ataei, A ; Grissonnanche, G ; LeBoeuf, D ; Licciardello, S ; Wiedmann, S ; Ono, S ; Raffy, H ; Kawasaki, S ; Zheng, G-Q ; Doiron-Leyraud, N ; Proust, C ; Taillefer, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25572595303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier density</topic><topic>Critical point</topic><topic>Cuprates</topic><topic>Current carriers</topic><topic>Electrical resistivity</topic><topic>Hall effect</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lorenz number</topic><topic>Low temperature</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Seebeck effect</topic><topic>Signatures</topic><topic>Single crystals</topic><topic>Superconductivity</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lizaire, M</creatorcontrib><creatorcontrib>Legros, A</creatorcontrib><creatorcontrib>Gourgout, A</creatorcontrib><creatorcontrib>Benhabib, S</creatorcontrib><creatorcontrib>Badoux, S</creatorcontrib><creatorcontrib>Laliberté, F</creatorcontrib><creatorcontrib>Boulanger, M-E</creatorcontrib><creatorcontrib>Ataei, A</creatorcontrib><creatorcontrib>Grissonnanche, G</creatorcontrib><creatorcontrib>LeBoeuf, D</creatorcontrib><creatorcontrib>Licciardello, S</creatorcontrib><creatorcontrib>Wiedmann, S</creatorcontrib><creatorcontrib>Ono, S</creatorcontrib><creatorcontrib>Raffy, H</creatorcontrib><creatorcontrib>Kawasaki, S</creatorcontrib><creatorcontrib>Zheng, G-Q</creatorcontrib><creatorcontrib>Doiron-Leyraud, N</creatorcontrib><creatorcontrib>Proust, C</creatorcontrib><creatorcontrib>Taillefer, L</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lizaire, M</au><au>Legros, A</au><au>Gourgout, A</au><au>Benhabib, S</au><au>Badoux, S</au><au>Laliberté, F</au><au>Boulanger, M-E</au><au>Ataei, A</au><au>Grissonnanche, G</au><au>LeBoeuf, D</au><au>Licciardello, S</au><au>Wiedmann, S</au><au>Ono, S</au><au>Raffy, H</au><au>Kawasaki, S</au><au>Zheng, G-Q</au><au>Doiron-Leyraud, N</au><au>Proust, C</au><au>Taillefer, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ</atitle><jtitle>Physical review. B</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Five transport coefficients of the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66 T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient, and thermal Hall conductivity were measured in two overdoped single crystals, with La concentration x = 0.2 ( Tc = 18 K) and x = 0.0 ( Tc = 10 K). The samples have dopings p very close to the critical doping p ★ where the pseudogap phase ends. The resistivity displays a linear dependence on temperature whose slope is consistent with Planckian dissipation. The Hall number n H decreases with reduced p , consistent with a drop in carrier density from n = 1 + p above p ★ to n = p below p ★ . This drop in n H is concomitant with a sharp drop in the density of states inferred from prior NMR Knight shift measurements. The thermal conductivity satisfies the Wiedemann-Franz law, showing that the pseudogap phase at T = 0 is a metal whose fermionic excitations carry heat and charge as do conventional electrons. The Seebeck coefficient diverges logarithmically at low temperature, a signature of quantum criticality. The thermal Hall conductivity becomes negative at low temperature, showing that phonons are chiral in the pseudogap phase. Given the observation of these same properties in other, very different cuprates, our study provides strong evidence for the universality of these five signatures of the pseudogap phase and its critical point.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.014515</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-07, Vol.104 (1), p.1 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2557259530 |
source | American Physical Society Journals |
subjects | Carrier density Critical point Cuprates Current carriers Electrical resistivity Hall effect Heat conductivity Heat transfer Lorenz number Low temperature NMR Nuclear magnetic resonance Seebeck effect Signatures Single crystals Superconductivity Temperature dependence Thermal conductivity Transport properties |
title | Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2 Sr2−x Lax CuO6+δ |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20signatures%20of%20the%20pseudogap%20critical%20point%20in%20the%20cuprate%20superconductor%20Bi2%20Sr2%E2%88%92x%20Lax%20CuO6+%CE%B4&rft.jtitle=Physical%20review.%20B&rft.au=Lizaire,%20M&rft.date=2021-07-01&rft.volume=104&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.014515&rft_dat=%3Cproquest%3E2557259530%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557259530&rft_id=info:pmid/&rfr_iscdi=true |