Linear and nonlinear response for radiative heat transfer in many-body systems

A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-07, Vol.104 (2), p.1, Article 024301
Hauptverfasser: Naeimi, A., Nikbakht, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1
container_title Physical review. B
container_volume 104
creator Naeimi, A.
Nikbakht, M.
description A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed method is highly efficient because it can skip the transient response, it is valid when external powers are weak. As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two, and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying, or accelerating temperature responses. This work could find important applications in the domain of dynamical thermal management at the nanoscale.
doi_str_mv 10.1103/PhysRevB.104.024301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557258216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557258216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-1f81639068a06482d6b7728dee18262948180bfb53f76b3092da1444b54505533</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMoWGo_gZeA560v_5OjFrVCURE9h2w3oVvapCbbwn57V1Y9vZlheAM_hK4JzAkBdvu26cu7P93PCfA5UM6AnKEJ5dJUxkhz_q8FXKJZKVsAIBKMAjNBL6s2epexiw2OKe5Gl305pFg8Dmkwrmld15483njX4S67WILPuI1472Jf1anpcelL5_flCl0Etyt-9nun6PPx4WOxrFavT8-Lu1W1pkp1FQmaSGZAageSa9rIWimqG--JppIaromGOtSCBSVrBoY2jnDOa8EFCMHYFN2Mfw85fR196ew2HXMcJi0VQlGh6TAwRWxsrXMqJftgD7ndu9xbAvaHnf1jNwTcjuzYN5UHYkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557258216</pqid></control><display><type>article</type><title>Linear and nonlinear response for radiative heat transfer in many-body systems</title><source>PROLA</source><creator>Naeimi, A. ; Nikbakht, M.</creator><creatorcontrib>Naeimi, A. ; Nikbakht, M.</creatorcontrib><description>A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed method is highly efficient because it can skip the transient response, it is valid when external powers are weak. As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two, and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying, or accelerating temperature responses. This work could find important applications in the domain of dynamical thermal management at the nanoscale.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.024301</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Attenuation ; Electrodynamics ; Nonlinear response ; Perturbation theory ; Power sources ; Radiative heat transfer ; Sine waves ; Thermal management ; Transient response</subject><ispartof>Physical review. B, 2021-07, Vol.104 (2), p.1, Article 024301</ispartof><rights>Copyright American Physical Society Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-1f81639068a06482d6b7728dee18262948180bfb53f76b3092da1444b54505533</citedby><cites>FETCH-LOGICAL-c277t-1f81639068a06482d6b7728dee18262948180bfb53f76b3092da1444b54505533</cites><orcidid>0000-0002-7904-537X ; 0000-0001-7868-3348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27926,27927</link.rule.ids></links><search><creatorcontrib>Naeimi, A.</creatorcontrib><creatorcontrib>Nikbakht, M.</creatorcontrib><title>Linear and nonlinear response for radiative heat transfer in many-body systems</title><title>Physical review. B</title><description>A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed method is highly efficient because it can skip the transient response, it is valid when external powers are weak. As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two, and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying, or accelerating temperature responses. This work could find important applications in the domain of dynamical thermal management at the nanoscale.</description><subject>Attenuation</subject><subject>Electrodynamics</subject><subject>Nonlinear response</subject><subject>Perturbation theory</subject><subject>Power sources</subject><subject>Radiative heat transfer</subject><subject>Sine waves</subject><subject>Thermal management</subject><subject>Transient response</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEUxIMoWGo_gZeA560v_5OjFrVCURE9h2w3oVvapCbbwn57V1Y9vZlheAM_hK4JzAkBdvu26cu7P93PCfA5UM6AnKEJ5dJUxkhz_q8FXKJZKVsAIBKMAjNBL6s2epexiw2OKe5Gl305pFg8Dmkwrmld15483njX4S67WILPuI1472Jf1anpcelL5_flCl0Etyt-9nun6PPx4WOxrFavT8-Lu1W1pkp1FQmaSGZAageSa9rIWimqG--JppIaromGOtSCBSVrBoY2jnDOa8EFCMHYFN2Mfw85fR196ew2HXMcJi0VQlGh6TAwRWxsrXMqJftgD7ndu9xbAvaHnf1jNwTcjuzYN5UHYkg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Naeimi, A.</creator><creator>Nikbakht, M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7904-537X</orcidid><orcidid>https://orcid.org/0000-0001-7868-3348</orcidid></search><sort><creationdate>20210701</creationdate><title>Linear and nonlinear response for radiative heat transfer in many-body systems</title><author>Naeimi, A. ; Nikbakht, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-1f81639068a06482d6b7728dee18262948180bfb53f76b3092da1444b54505533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Electrodynamics</topic><topic>Nonlinear response</topic><topic>Perturbation theory</topic><topic>Power sources</topic><topic>Radiative heat transfer</topic><topic>Sine waves</topic><topic>Thermal management</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naeimi, A.</creatorcontrib><creatorcontrib>Nikbakht, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naeimi, A.</au><au>Nikbakht, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and nonlinear response for radiative heat transfer in many-body systems</atitle><jtitle>Physical review. B</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>104</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>024301</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed method is highly efficient because it can skip the transient response, it is valid when external powers are weak. As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two, and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying, or accelerating temperature responses. This work could find important applications in the domain of dynamical thermal management at the nanoscale.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.024301</doi><orcidid>https://orcid.org/0000-0002-7904-537X</orcidid><orcidid>https://orcid.org/0000-0001-7868-3348</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-07, Vol.104 (2), p.1, Article 024301
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2557258216
source PROLA
subjects Attenuation
Electrodynamics
Nonlinear response
Perturbation theory
Power sources
Radiative heat transfer
Sine waves
Thermal management
Transient response
title Linear and nonlinear response for radiative heat transfer in many-body systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20nonlinear%20response%20for%20radiative%20heat%20transfer%20in%20many-body%20systems&rft.jtitle=Physical%20review.%20B&rft.au=Naeimi,%20A.&rft.date=2021-07-01&rft.volume=104&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=024301&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.024301&rft_dat=%3Cproquest_cross%3E2557258216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557258216&rft_id=info:pmid/&rfr_iscdi=true