Linear and nonlinear response for radiative heat transfer in many-body systems
A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for tempe...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-07, Vol.104 (2), p.1, Article 024301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 104 |
creator | Naeimi, A. Nikbakht, M. |
description | A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed method is highly efficient because it can skip the transient response, it is valid when external powers are weak. As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two, and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying, or accelerating temperature responses. This work could find important applications in the domain of dynamical thermal management at the nanoscale. |
doi_str_mv | 10.1103/PhysRevB.104.024301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557258216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557258216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-1f81639068a06482d6b7728dee18262948180bfb53f76b3092da1444b54505533</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMoWGo_gZeA560v_5OjFrVCURE9h2w3oVvapCbbwn57V1Y9vZlheAM_hK4JzAkBdvu26cu7P93PCfA5UM6AnKEJ5dJUxkhz_q8FXKJZKVsAIBKMAjNBL6s2epexiw2OKe5Gl305pFg8Dmkwrmld15483njX4S67WILPuI1472Jf1anpcelL5_flCl0Etyt-9nun6PPx4WOxrFavT8-Lu1W1pkp1FQmaSGZAageSa9rIWimqG--JppIaromGOtSCBSVrBoY2jnDOa8EFCMHYFN2Mfw85fR196ew2HXMcJi0VQlGh6TAwRWxsrXMqJftgD7ndu9xbAvaHnf1jNwTcjuzYN5UHYkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557258216</pqid></control><display><type>article</type><title>Linear and nonlinear response for radiative heat transfer in many-body systems</title><source>PROLA</source><creator>Naeimi, A. ; Nikbakht, M.</creator><creatorcontrib>Naeimi, A. ; Nikbakht, M.</creatorcontrib><description>A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed method is highly efficient because it can skip the transient response, it is valid when external powers are weak. As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two, and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying, or accelerating temperature responses. This work could find important applications in the domain of dynamical thermal management at the nanoscale.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.024301</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Attenuation ; Electrodynamics ; Nonlinear response ; Perturbation theory ; Power sources ; Radiative heat transfer ; Sine waves ; Thermal management ; Transient response</subject><ispartof>Physical review. B, 2021-07, Vol.104 (2), p.1, Article 024301</ispartof><rights>Copyright American Physical Society Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-1f81639068a06482d6b7728dee18262948180bfb53f76b3092da1444b54505533</citedby><cites>FETCH-LOGICAL-c277t-1f81639068a06482d6b7728dee18262948180bfb53f76b3092da1444b54505533</cites><orcidid>0000-0002-7904-537X ; 0000-0001-7868-3348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27926,27927</link.rule.ids></links><search><creatorcontrib>Naeimi, A.</creatorcontrib><creatorcontrib>Nikbakht, M.</creatorcontrib><title>Linear and nonlinear response for radiative heat transfer in many-body systems</title><title>Physical review. B</title><description>A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed method is highly efficient because it can skip the transient response, it is valid when external powers are weak. As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two, and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying, or accelerating temperature responses. This work could find important applications in the domain of dynamical thermal management at the nanoscale.</description><subject>Attenuation</subject><subject>Electrodynamics</subject><subject>Nonlinear response</subject><subject>Perturbation theory</subject><subject>Power sources</subject><subject>Radiative heat transfer</subject><subject>Sine waves</subject><subject>Thermal management</subject><subject>Transient response</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEUxIMoWGo_gZeA560v_5OjFrVCURE9h2w3oVvapCbbwn57V1Y9vZlheAM_hK4JzAkBdvu26cu7P93PCfA5UM6AnKEJ5dJUxkhz_q8FXKJZKVsAIBKMAjNBL6s2epexiw2OKe5Gl305pFg8Dmkwrmld15483njX4S67WILPuI1472Jf1anpcelL5_flCl0Etyt-9nun6PPx4WOxrFavT8-Lu1W1pkp1FQmaSGZAageSa9rIWimqG--JppIaromGOtSCBSVrBoY2jnDOa8EFCMHYFN2Mfw85fR196ew2HXMcJi0VQlGh6TAwRWxsrXMqJftgD7ndu9xbAvaHnf1jNwTcjuzYN5UHYkg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Naeimi, A.</creator><creator>Nikbakht, M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7904-537X</orcidid><orcidid>https://orcid.org/0000-0001-7868-3348</orcidid></search><sort><creationdate>20210701</creationdate><title>Linear and nonlinear response for radiative heat transfer in many-body systems</title><author>Naeimi, A. ; Nikbakht, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-1f81639068a06482d6b7728dee18262948180bfb53f76b3092da1444b54505533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Electrodynamics</topic><topic>Nonlinear response</topic><topic>Perturbation theory</topic><topic>Power sources</topic><topic>Radiative heat transfer</topic><topic>Sine waves</topic><topic>Thermal management</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naeimi, A.</creatorcontrib><creatorcontrib>Nikbakht, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naeimi, A.</au><au>Nikbakht, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and nonlinear response for radiative heat transfer in many-body systems</atitle><jtitle>Physical review. B</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>104</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>024301</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>A theory of temperature dynamics in many-body systems driven by time-dependent external sources is introduced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed method is highly efficient because it can skip the transient response, it is valid when external powers are weak. As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two, and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying, or accelerating temperature responses. This work could find important applications in the domain of dynamical thermal management at the nanoscale.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.024301</doi><orcidid>https://orcid.org/0000-0002-7904-537X</orcidid><orcidid>https://orcid.org/0000-0001-7868-3348</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-07, Vol.104 (2), p.1, Article 024301 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2557258216 |
source | PROLA |
subjects | Attenuation Electrodynamics Nonlinear response Perturbation theory Power sources Radiative heat transfer Sine waves Thermal management Transient response |
title | Linear and nonlinear response for radiative heat transfer in many-body systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20nonlinear%20response%20for%20radiative%20heat%20transfer%20in%20many-body%20systems&rft.jtitle=Physical%20review.%20B&rft.au=Naeimi,%20A.&rft.date=2021-07-01&rft.volume=104&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=024301&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.024301&rft_dat=%3Cproquest_cross%3E2557258216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557258216&rft_id=info:pmid/&rfr_iscdi=true |