IAM: An Intuitive ANFIS-based method for stiction detection
Stiction in control valves is an industry-wide problem which results in degradation of control performance. A new approach to detect the presence of stiction by utilising only the PV-OP data from control loops is proposed using an Adaptive Neuro-fuzzy Inferencing System (ANFIS). Intuitively, the err...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2018-12, Vol.458 (1), p.12054 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12054 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 458 |
creator | Jeremiah, Sean S Zabiri, H Ramasamy, M Kamaruddin, B Teh, W K Mohd Amiruddin, A A A |
description | Stiction in control valves is an industry-wide problem which results in degradation of control performance. A new approach to detect the presence of stiction by utilising only the PV-OP data from control loops is proposed using an Adaptive Neuro-fuzzy Inferencing System (ANFIS). Intuitively, the error between the output of an FIS model developed with stiction and a process with stiction would be minimal. When benchmarked against seventeen well-known industrial control loop case studies, the Intuitive ANFIS-based Method (IAM) accurately predicts the presence or absence of stiction in 65% of loops tested. |
doi_str_mv | 10.1088/1757-899X/458/1/012054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557217094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557217094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3064-c2a3629b4174d6a6bf9eaa39c822a58c682c42d94561a7f18fd22a24a28297093</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLeeFOXpGk-9KqMTQubXkzBu5C1KXa4piap4L83szIRBK_OOZznvAceAM4xusJIiAnmGU-ElM8TmsVpgjBBGT0Ao_3icN8LfAxOvN8gxDilaARuinx5DfMWFm3om9C8G5jfz4tVstbeVHBrwoutYG0d9KEpQ2NbWJlgvrpTcFTrV2_OvusYPM1nj9O7ZPFwW0zzRVKmiNGkJDplRK4p5rRimq1rabROZSkI0ZkomSAlJZWkGcOa11jUVVwQqokgkiOZjsHFkNs5-9YbH9TG9q6NLxXJMk5whGik2ECVznrvTK0612y1-1AYqZ0otXOgdj5UFKWwGkTFw8vhsLHdT_JyNfuFqa6qI0r-QP_J_wSpSXT6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557217094</pqid></control><display><type>article</type><title>IAM: An Intuitive ANFIS-based method for stiction detection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Jeremiah, Sean S ; Zabiri, H ; Ramasamy, M ; Kamaruddin, B ; Teh, W K ; Mohd Amiruddin, A A A</creator><creatorcontrib>Jeremiah, Sean S ; Zabiri, H ; Ramasamy, M ; Kamaruddin, B ; Teh, W K ; Mohd Amiruddin, A A A</creatorcontrib><description>Stiction in control valves is an industry-wide problem which results in degradation of control performance. A new approach to detect the presence of stiction by utilising only the PV-OP data from control loops is proposed using an Adaptive Neuro-fuzzy Inferencing System (ANFIS). Intuitively, the error between the output of an FIS model developed with stiction and a process with stiction would be minimal. When benchmarked against seventeen well-known industrial control loop case studies, the Intuitive ANFIS-based Method (IAM) accurately predicts the presence or absence of stiction in 65% of loops tested.</description><identifier>ISSN: 1757-8981</identifier><identifier>ISSN: 1757-899X</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/458/1/012054</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Adaptive control ; Fuzzy logic ; Stiction</subject><ispartof>IOP conference series. Materials Science and Engineering, 2018-12, Vol.458 (1), p.12054</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3064-c2a3629b4174d6a6bf9eaa39c822a58c682c42d94561a7f18fd22a24a28297093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/458/1/012054/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27929,27930,38873,38895,53845,53872</link.rule.ids></links><search><creatorcontrib>Jeremiah, Sean S</creatorcontrib><creatorcontrib>Zabiri, H</creatorcontrib><creatorcontrib>Ramasamy, M</creatorcontrib><creatorcontrib>Kamaruddin, B</creatorcontrib><creatorcontrib>Teh, W K</creatorcontrib><creatorcontrib>Mohd Amiruddin, A A A</creatorcontrib><title>IAM: An Intuitive ANFIS-based method for stiction detection</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Stiction in control valves is an industry-wide problem which results in degradation of control performance. A new approach to detect the presence of stiction by utilising only the PV-OP data from control loops is proposed using an Adaptive Neuro-fuzzy Inferencing System (ANFIS). Intuitively, the error between the output of an FIS model developed with stiction and a process with stiction would be minimal. When benchmarked against seventeen well-known industrial control loop case studies, the Intuitive ANFIS-based Method (IAM) accurately predicts the presence or absence of stiction in 65% of loops tested.</description><subject>Adaptive control</subject><subject>Fuzzy logic</subject><subject>Stiction</subject><issn>1757-8981</issn><issn>1757-899X</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLeeFOXpGk-9KqMTQubXkzBu5C1KXa4piap4L83szIRBK_OOZznvAceAM4xusJIiAnmGU-ElM8TmsVpgjBBGT0Ao_3icN8LfAxOvN8gxDilaARuinx5DfMWFm3om9C8G5jfz4tVstbeVHBrwoutYG0d9KEpQ2NbWJlgvrpTcFTrV2_OvusYPM1nj9O7ZPFwW0zzRVKmiNGkJDplRK4p5rRimq1rabROZSkI0ZkomSAlJZWkGcOa11jUVVwQqokgkiOZjsHFkNs5-9YbH9TG9q6NLxXJMk5whGik2ECVznrvTK0612y1-1AYqZ0otXOgdj5UFKWwGkTFw8vhsLHdT_JyNfuFqa6qI0r-QP_J_wSpSXT6</recordid><startdate>20181224</startdate><enddate>20181224</enddate><creator>Jeremiah, Sean S</creator><creator>Zabiri, H</creator><creator>Ramasamy, M</creator><creator>Kamaruddin, B</creator><creator>Teh, W K</creator><creator>Mohd Amiruddin, A A A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181224</creationdate><title>IAM: An Intuitive ANFIS-based method for stiction detection</title><author>Jeremiah, Sean S ; Zabiri, H ; Ramasamy, M ; Kamaruddin, B ; Teh, W K ; Mohd Amiruddin, A A A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3064-c2a3629b4174d6a6bf9eaa39c822a58c682c42d94561a7f18fd22a24a28297093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Fuzzy logic</topic><topic>Stiction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeremiah, Sean S</creatorcontrib><creatorcontrib>Zabiri, H</creatorcontrib><creatorcontrib>Ramasamy, M</creatorcontrib><creatorcontrib>Kamaruddin, B</creatorcontrib><creatorcontrib>Teh, W K</creatorcontrib><creatorcontrib>Mohd Amiruddin, A A A</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeremiah, Sean S</au><au>Zabiri, H</au><au>Ramasamy, M</au><au>Kamaruddin, B</au><au>Teh, W K</au><au>Mohd Amiruddin, A A A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IAM: An Intuitive ANFIS-based method for stiction detection</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2018-12-24</date><risdate>2018</risdate><volume>458</volume><issue>1</issue><spage>12054</spage><pages>12054-</pages><issn>1757-8981</issn><issn>1757-899X</issn><eissn>1757-899X</eissn><abstract>Stiction in control valves is an industry-wide problem which results in degradation of control performance. A new approach to detect the presence of stiction by utilising only the PV-OP data from control loops is proposed using an Adaptive Neuro-fuzzy Inferencing System (ANFIS). Intuitively, the error between the output of an FIS model developed with stiction and a process with stiction would be minimal. When benchmarked against seventeen well-known industrial control loop case studies, the Intuitive ANFIS-based Method (IAM) accurately predicts the presence or absence of stiction in 65% of loops tested.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/458/1/012054</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2018-12, Vol.458 (1), p.12054 |
issn | 1757-8981 1757-899X 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2557217094 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Adaptive control Fuzzy logic Stiction |
title | IAM: An Intuitive ANFIS-based method for stiction detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IAM:%20An%20Intuitive%20ANFIS-based%20method%20for%20stiction%20detection&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Jeremiah,%20Sean%20S&rft.date=2018-12-24&rft.volume=458&rft.issue=1&rft.spage=12054&rft.pages=12054-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/458/1/012054&rft_dat=%3Cproquest_cross%3E2557217094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557217094&rft_id=info:pmid/&rfr_iscdi=true |