Study on Vibration Acceleration Prediction Model of Track Inspection Vehicle Based on BP Neural Network
In order to study the mapping relationship between the track irregularity parameters, vehicle running speed and the vehicle vibration acceleration detected by the track inspection vehicle, and to provide better data support for diseases detection of track inspection vehicle and maintenance of rail l...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2018-11, Vol.435 (1), p.12041 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12041 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 435 |
creator | Wang, Jin Kai He, Yue Lei Lu, Hong Yao Li, Zai Wei |
description | In order to study the mapping relationship between the track irregularity parameters, vehicle running speed and the vehicle vibration acceleration detected by the track inspection vehicle, and to provide better data support for diseases detection of track inspection vehicle and maintenance of rail line, this paper develops a BP (Back Propagation) neural network model that combines the big data analysis technology to predict the vibration acceleration of the track inspection vehicle. The sample data for this model comes from the inspection data of a passenger transport special line in East China. Based on grey relational analysis method, this research preprocesses the correction of mileage deviation for the sample data and analyzes the correlation degree between seven track irregularity parameters and two kinds of vehicle vibration accelerations, the results show that all input layer indicators of the neural network model have different degrees of influence on the output layer indicators. And the predicting results with test data shows that the average accuracy of the whole sample for vertical vibration acceleration and lateral vibration acceleration is 85.75% and 90.25%. |
doi_str_mv | 10.1088/1757-899X/435/1/012041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2557159261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557159261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-c56368a722d0d9b19a86caf82b37767feccdd4de1f08fe7dc866c2e0ed3c1a6d3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxYMoWKtfQQJevMTsbrJ_cmxL1UKrhdbibdnuTjRtbOJugvTbm5iiCIKnecO89wZ-nneJ0Q1GQoSYUx6IJHkO44iGOESYoBgfeb3vw_G3FvjUO3NugxDjcYx63suiqs3eL3b-KltbVWWNGmgNORyWuQWT6S85KwzkfpH6S6v01p_sXAndZQWvmc7BHyoHpi0bzv0HqK3Km1F9FHZ77p2kKndwcZh97-l2vBzdB9PHu8loMA10TGkVaMoiJhQnxCCTrHGiBNMqFWQdcc54ClobExvAKRIpcKMFY5oAAhNprJiJ-t5V11va4r0GV8lNUdtd81ISSjmmCWG4cbHOpW3hnIVUljZ7U3YvMZItVNnyki072UCVWHZQmyDpgllR_jT_G7r-IzRbjH_ZZGnS6BP2BoeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557159261</pqid></control><display><type>article</type><title>Study on Vibration Acceleration Prediction Model of Track Inspection Vehicle Based on BP Neural Network</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Jin Kai ; He, Yue Lei ; Lu, Hong Yao ; Li, Zai Wei</creator><creatorcontrib>Wang, Jin Kai ; He, Yue Lei ; Lu, Hong Yao ; Li, Zai Wei</creatorcontrib><description>In order to study the mapping relationship between the track irregularity parameters, vehicle running speed and the vehicle vibration acceleration detected by the track inspection vehicle, and to provide better data support for diseases detection of track inspection vehicle and maintenance of rail line, this paper develops a BP (Back Propagation) neural network model that combines the big data analysis technology to predict the vibration acceleration of the track inspection vehicle. The sample data for this model comes from the inspection data of a passenger transport special line in East China. Based on grey relational analysis method, this research preprocesses the correction of mileage deviation for the sample data and analyzes the correlation degree between seven track irregularity parameters and two kinds of vehicle vibration accelerations, the results show that all input layer indicators of the neural network model have different degrees of influence on the output layer indicators. And the predicting results with test data shows that the average accuracy of the whole sample for vertical vibration acceleration and lateral vibration acceleration is 85.75% and 90.25%.</description><identifier>ISSN: 1757-8981</identifier><identifier>ISSN: 1757-899X</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/435/1/012041</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acceleration ; Back propagation networks ; Data analysis ; Indicators ; Inspection ; Irregularities ; Mathematical models ; Neural networks ; Parameters ; Prediction models ; Technology assessment ; Trains ; Vibration analysis</subject><ispartof>IOP conference series. Materials Science and Engineering, 2018-11, Vol.435 (1), p.12041</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-c56368a722d0d9b19a86caf82b37767feccdd4de1f08fe7dc866c2e0ed3c1a6d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/435/1/012041/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Wang, Jin Kai</creatorcontrib><creatorcontrib>He, Yue Lei</creatorcontrib><creatorcontrib>Lu, Hong Yao</creatorcontrib><creatorcontrib>Li, Zai Wei</creatorcontrib><title>Study on Vibration Acceleration Prediction Model of Track Inspection Vehicle Based on BP Neural Network</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>In order to study the mapping relationship between the track irregularity parameters, vehicle running speed and the vehicle vibration acceleration detected by the track inspection vehicle, and to provide better data support for diseases detection of track inspection vehicle and maintenance of rail line, this paper develops a BP (Back Propagation) neural network model that combines the big data analysis technology to predict the vibration acceleration of the track inspection vehicle. The sample data for this model comes from the inspection data of a passenger transport special line in East China. Based on grey relational analysis method, this research preprocesses the correction of mileage deviation for the sample data and analyzes the correlation degree between seven track irregularity parameters and two kinds of vehicle vibration accelerations, the results show that all input layer indicators of the neural network model have different degrees of influence on the output layer indicators. And the predicting results with test data shows that the average accuracy of the whole sample for vertical vibration acceleration and lateral vibration acceleration is 85.75% and 90.25%.</description><subject>Acceleration</subject><subject>Back propagation networks</subject><subject>Data analysis</subject><subject>Indicators</subject><subject>Inspection</subject><subject>Irregularities</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Technology assessment</subject><subject>Trains</subject><subject>Vibration analysis</subject><issn>1757-8981</issn><issn>1757-899X</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9Lw0AQxYMoWKtfQQJevMTsbrJ_cmxL1UKrhdbibdnuTjRtbOJugvTbm5iiCIKnecO89wZ-nneJ0Q1GQoSYUx6IJHkO44iGOESYoBgfeb3vw_G3FvjUO3NugxDjcYx63suiqs3eL3b-KltbVWWNGmgNORyWuQWT6S85KwzkfpH6S6v01p_sXAndZQWvmc7BHyoHpi0bzv0HqK3Km1F9FHZ77p2kKndwcZh97-l2vBzdB9PHu8loMA10TGkVaMoiJhQnxCCTrHGiBNMqFWQdcc54ClobExvAKRIpcKMFY5oAAhNprJiJ-t5V11va4r0GV8lNUdtd81ISSjmmCWG4cbHOpW3hnIVUljZ7U3YvMZItVNnyki072UCVWHZQmyDpgllR_jT_G7r-IzRbjH_ZZGnS6BP2BoeE</recordid><startdate>20181105</startdate><enddate>20181105</enddate><creator>Wang, Jin Kai</creator><creator>He, Yue Lei</creator><creator>Lu, Hong Yao</creator><creator>Li, Zai Wei</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181105</creationdate><title>Study on Vibration Acceleration Prediction Model of Track Inspection Vehicle Based on BP Neural Network</title><author>Wang, Jin Kai ; He, Yue Lei ; Lu, Hong Yao ; Li, Zai Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-c56368a722d0d9b19a86caf82b37767feccdd4de1f08fe7dc866c2e0ed3c1a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Back propagation networks</topic><topic>Data analysis</topic><topic>Indicators</topic><topic>Inspection</topic><topic>Irregularities</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Technology assessment</topic><topic>Trains</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jin Kai</creatorcontrib><creatorcontrib>He, Yue Lei</creatorcontrib><creatorcontrib>Lu, Hong Yao</creatorcontrib><creatorcontrib>Li, Zai Wei</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jin Kai</au><au>He, Yue Lei</au><au>Lu, Hong Yao</au><au>Li, Zai Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Vibration Acceleration Prediction Model of Track Inspection Vehicle Based on BP Neural Network</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2018-11-05</date><risdate>2018</risdate><volume>435</volume><issue>1</issue><spage>12041</spage><pages>12041-</pages><issn>1757-8981</issn><issn>1757-899X</issn><eissn>1757-899X</eissn><abstract>In order to study the mapping relationship between the track irregularity parameters, vehicle running speed and the vehicle vibration acceleration detected by the track inspection vehicle, and to provide better data support for diseases detection of track inspection vehicle and maintenance of rail line, this paper develops a BP (Back Propagation) neural network model that combines the big data analysis technology to predict the vibration acceleration of the track inspection vehicle. The sample data for this model comes from the inspection data of a passenger transport special line in East China. Based on grey relational analysis method, this research preprocesses the correction of mileage deviation for the sample data and analyzes the correlation degree between seven track irregularity parameters and two kinds of vehicle vibration accelerations, the results show that all input layer indicators of the neural network model have different degrees of influence on the output layer indicators. And the predicting results with test data shows that the average accuracy of the whole sample for vertical vibration acceleration and lateral vibration acceleration is 85.75% and 90.25%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/435/1/012041</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2018-11, Vol.435 (1), p.12041 |
issn | 1757-8981 1757-899X 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2557159261 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Acceleration Back propagation networks Data analysis Indicators Inspection Irregularities Mathematical models Neural networks Parameters Prediction models Technology assessment Trains Vibration analysis |
title | Study on Vibration Acceleration Prediction Model of Track Inspection Vehicle Based on BP Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Vibration%20Acceleration%20Prediction%20Model%20of%20Track%20Inspection%20Vehicle%20Based%20on%20BP%20Neural%20Network&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Wang,%20Jin%20Kai&rft.date=2018-11-05&rft.volume=435&rft.issue=1&rft.spage=12041&rft.pages=12041-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/435/1/012041&rft_dat=%3Cproquest_iop_j%3E2557159261%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557159261&rft_id=info:pmid/&rfr_iscdi=true |