Small Object Detection via Precise Region-Based Fully Convolutional Networks

In the past several years, remarkable achievements have been made in the field of object detection. Although performance is generally improving, the accuracy of small object detection remains low compared with that of large object detection. In addition, localization misalignment issues are common f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2021, Vol.69 (2), p.1503-1517
Hauptverfasser: Zhang, Dengyong, Hu, Jiawei, Li, Feng, Ding, Xiangling, Kumar Sangaiah, Arun, S. Sheng, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1517
container_issue 2
container_start_page 1503
container_title Computers, materials & continua
container_volume 69
creator Zhang, Dengyong
Hu, Jiawei
Li, Feng
Ding, Xiangling
Kumar Sangaiah, Arun
S. Sheng, Victor
description In the past several years, remarkable achievements have been made in the field of object detection. Although performance is generally improving, the accuracy of small object detection remains low compared with that of large object detection. In addition, localization misalignment issues are common for small objects, as seen in GoogLeNets and residual networks (ResNets). To address this problem, we propose an improved region-based fully convolutional network (R-FCN). The presented technique improves detection accuracy and eliminates localization misalignment by replacing position-sensitive region of interest (PS-RoI) pooling with position-sensitive precise region of interest (PS-Pr-RoI) pooling, which avoids coordinate quantization and directly calculates two-order integrals for position-sensitive score maps, thus preventing a loss of spatial precision. A validation experiment was conducted in which the Microsoft common objects in context (MS COCO) training dataset was oversampled. Results showed an accuracy improvement of for object detection tasks and an increase of for small objects.
doi_str_mv 10.32604/cmc.2021.017089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557143537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557143537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-622cb692a6da191a5014bee34848cb62e78cab326c0717e084c8ef4a94e9f45e3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmNw5xiJc4fz0bQ9wmADaWKIj3OUZi7qyJaRtEP792SMA6fXsh9Z9kPIJYOR4ArktV3ZEQfORsAKKKsjMmC5VBnnXB3_q0_JWYxLAKFEBQMye10Z5-i8XqLt6B12KVq_ptvW0OeAto1IX_AjtbJbE3FBJ71zOzr26613_R41jj5h9-3DZzwnJ41xES_-ckjeJ_dv44dsNp8-jm9mmRVMdJni3Naq4kYtDKuYyYHJGlHIUpZpwLEoranTVxYKViCU0pbYSFNJrBqZoxiSq8PeTfBfPcZOL30f0iVR8zwvmBS5KBIFB8oGH2PARm9CuzJhpxnoX2c6OdN7Z_rgTPwA15VfAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557143537</pqid></control><display><type>article</type><title>Small Object Detection via Precise Region-Based Fully Convolutional Networks</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Dengyong ; Hu, Jiawei ; Li, Feng ; Ding, Xiangling ; Kumar Sangaiah, Arun ; S. Sheng, Victor</creator><creatorcontrib>Zhang, Dengyong ; Hu, Jiawei ; Li, Feng ; Ding, Xiangling ; Kumar Sangaiah, Arun ; S. Sheng, Victor</creatorcontrib><description>In the past several years, remarkable achievements have been made in the field of object detection. Although performance is generally improving, the accuracy of small object detection remains low compared with that of large object detection. In addition, localization misalignment issues are common for small objects, as seen in GoogLeNets and residual networks (ResNets). To address this problem, we propose an improved region-based fully convolutional network (R-FCN). The presented technique improves detection accuracy and eliminates localization misalignment by replacing position-sensitive region of interest (PS-RoI) pooling with position-sensitive precise region of interest (PS-Pr-RoI) pooling, which avoids coordinate quantization and directly calculates two-order integrals for position-sensitive score maps, thus preventing a loss of spatial precision. A validation experiment was conducted in which the Microsoft common objects in context (MS COCO) training dataset was oversampled. Results showed an accuracy improvement of for object detection tasks and an increase of for small objects.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2021.017089</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Accuracy ; Localization ; Meteorological satellites ; Misalignment ; Object recognition ; Position sensing</subject><ispartof>Computers, materials &amp; continua, 2021, Vol.69 (2), p.1503-1517</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-622cb692a6da191a5014bee34848cb62e78cab326c0717e084c8ef4a94e9f45e3</citedby><cites>FETCH-LOGICAL-c313t-622cb692a6da191a5014bee34848cb62e78cab326c0717e084c8ef4a94e9f45e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Dengyong</creatorcontrib><creatorcontrib>Hu, Jiawei</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Ding, Xiangling</creatorcontrib><creatorcontrib>Kumar Sangaiah, Arun</creatorcontrib><creatorcontrib>S. Sheng, Victor</creatorcontrib><title>Small Object Detection via Precise Region-Based Fully Convolutional Networks</title><title>Computers, materials &amp; continua</title><description>In the past several years, remarkable achievements have been made in the field of object detection. Although performance is generally improving, the accuracy of small object detection remains low compared with that of large object detection. In addition, localization misalignment issues are common for small objects, as seen in GoogLeNets and residual networks (ResNets). To address this problem, we propose an improved region-based fully convolutional network (R-FCN). The presented technique improves detection accuracy and eliminates localization misalignment by replacing position-sensitive region of interest (PS-RoI) pooling with position-sensitive precise region of interest (PS-Pr-RoI) pooling, which avoids coordinate quantization and directly calculates two-order integrals for position-sensitive score maps, thus preventing a loss of spatial precision. A validation experiment was conducted in which the Microsoft common objects in context (MS COCO) training dataset was oversampled. Results showed an accuracy improvement of for object detection tasks and an increase of for small objects.</description><subject>Accuracy</subject><subject>Localization</subject><subject>Meteorological satellites</subject><subject>Misalignment</subject><subject>Object recognition</subject><subject>Position sensing</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE1PwzAMhiMEEmNw5xiJc4fz0bQ9wmADaWKIj3OUZi7qyJaRtEP792SMA6fXsh9Z9kPIJYOR4ArktV3ZEQfORsAKKKsjMmC5VBnnXB3_q0_JWYxLAKFEBQMye10Z5-i8XqLt6B12KVq_ptvW0OeAto1IX_AjtbJbE3FBJ71zOzr26613_R41jj5h9-3DZzwnJ41xES_-ckjeJ_dv44dsNp8-jm9mmRVMdJni3Naq4kYtDKuYyYHJGlHIUpZpwLEoranTVxYKViCU0pbYSFNJrBqZoxiSq8PeTfBfPcZOL30f0iVR8zwvmBS5KBIFB8oGH2PARm9CuzJhpxnoX2c6OdN7Z_rgTPwA15VfAw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Dengyong</creator><creator>Hu, Jiawei</creator><creator>Li, Feng</creator><creator>Ding, Xiangling</creator><creator>Kumar Sangaiah, Arun</creator><creator>S. Sheng, Victor</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2021</creationdate><title>Small Object Detection via Precise Region-Based Fully Convolutional Networks</title><author>Zhang, Dengyong ; Hu, Jiawei ; Li, Feng ; Ding, Xiangling ; Kumar Sangaiah, Arun ; S. Sheng, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-622cb692a6da191a5014bee34848cb62e78cab326c0717e084c8ef4a94e9f45e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Localization</topic><topic>Meteorological satellites</topic><topic>Misalignment</topic><topic>Object recognition</topic><topic>Position sensing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dengyong</creatorcontrib><creatorcontrib>Hu, Jiawei</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Ding, Xiangling</creatorcontrib><creatorcontrib>Kumar Sangaiah, Arun</creatorcontrib><creatorcontrib>S. Sheng, Victor</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dengyong</au><au>Hu, Jiawei</au><au>Li, Feng</au><au>Ding, Xiangling</au><au>Kumar Sangaiah, Arun</au><au>S. Sheng, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Object Detection via Precise Region-Based Fully Convolutional Networks</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2021</date><risdate>2021</risdate><volume>69</volume><issue>2</issue><spage>1503</spage><epage>1517</epage><pages>1503-1517</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>In the past several years, remarkable achievements have been made in the field of object detection. Although performance is generally improving, the accuracy of small object detection remains low compared with that of large object detection. In addition, localization misalignment issues are common for small objects, as seen in GoogLeNets and residual networks (ResNets). To address this problem, we propose an improved region-based fully convolutional network (R-FCN). The presented technique improves detection accuracy and eliminates localization misalignment by replacing position-sensitive region of interest (PS-RoI) pooling with position-sensitive precise region of interest (PS-Pr-RoI) pooling, which avoids coordinate quantization and directly calculates two-order integrals for position-sensitive score maps, thus preventing a loss of spatial precision. A validation experiment was conducted in which the Microsoft common objects in context (MS COCO) training dataset was oversampled. Results showed an accuracy improvement of for object detection tasks and an increase of for small objects.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2021.017089</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2021, Vol.69 (2), p.1503-1517
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2557143537
source EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Localization
Meteorological satellites
Misalignment
Object recognition
Position sensing
title Small Object Detection via Precise Region-Based Fully Convolutional Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Object%20Detection%20via%20Precise%20Region-Based%20Fully%20Convolutional%20Networks&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Zhang,%20Dengyong&rft.date=2021&rft.volume=69&rft.issue=2&rft.spage=1503&rft.epage=1517&rft.pages=1503-1517&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2021.017089&rft_dat=%3Cproquest_cross%3E2557143537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557143537&rft_id=info:pmid/&rfr_iscdi=true