Deep Neural Networks Based Approach for Battery Life Prediction

The Internet of Things (IoT) and related applications have witnessed enormous growth since its inception. The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain. Although the applicability of these applications are predominant, battery life...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2021, Vol.69 (2), p.2599-2615
Hauptverfasser: Bhattacharya, Sweta, Kumar Reddy Maddikunta, Praveen, Meenakshisundaram, Iyapparaja, Reddy Gadekallu, Thippa, Sharma, Sparsh, Alkahtani, Mohammed, Haider Abidi, Mustufa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2615
container_issue 2
container_start_page 2599
container_title Computers, materials & continua
container_volume 69
creator Bhattacharya, Sweta
Kumar Reddy Maddikunta, Praveen
Meenakshisundaram, Iyapparaja
Reddy Gadekallu, Thippa
Sharma, Sparsh
Alkahtani, Mohammed
Haider Abidi, Mustufa
description The Internet of Things (IoT) and related applications have witnessed enormous growth since its inception. The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain. Although the applicability of these applications are predominant, battery life remains to be a major challenge for IoT devices, wherein unreliability and shortened life would make an IoT application completely useless. In this work, an optimized deep neural networks based model is used to predict the battery life of the IoT systems. The present study uses the Chicago Park Beach dataset collected from the publicly available data repository for the experimentation of the proposed methodology. The dataset is pre-processed using the attribute mean technique eliminating the missing values and then One-Hot encoding technique is implemented to convert it to numerical format. This processed data is normalized using the Standard Scaler technique. Moth Flame Optimization (MFO) Algorithm is then implemented for selecting the optimal features in the dataset. These optimal features are finally fed into the DNN model and the results generated are evaluated against the state-of-the-art models, which justify the superiority of the proposed MFO-DNN model.
doi_str_mv 10.32604/cmc.2021.016229
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557143208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557143208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-c4b9f1c849dc78691db3047c88548a527b7615142e0e2c3c81260f8a288bf4c73</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwM0ZiTrHPjuNMqJRPKQIGmC3nYouUtgm2I9T_HkMYmN7T6ene3Y-Qc0YXHCQVl7jFBVBgC8okQHVAZqwQMgcAefjPH5OTENaUcskrOiNXN9YO2ZMdvdkkiV-9_wjZtQm2zZbD4HuD75nrfRrFaP0-qztnsxdv2w5j1-9OyZEzm2DP_nRO3u5uX1cPef18_7ha1jlyxmOOoqkcQyWqFkslK9Y2nIoSlSqEMgWUTSlZwQRYagE5KpZ-csqAUo0TWPI5uZj2ppM-RxuiXvej36VKDUVRMsGBqpSiUwp9H4K3Tg--2xq_14zqX0w6YdI_mPSEiX8DmAtY-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557143208</pqid></control><display><type>article</type><title>Deep Neural Networks Based Approach for Battery Life Prediction</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bhattacharya, Sweta ; Kumar Reddy Maddikunta, Praveen ; Meenakshisundaram, Iyapparaja ; Reddy Gadekallu, Thippa ; Sharma, Sparsh ; Alkahtani, Mohammed ; Haider Abidi, Mustufa</creator><creatorcontrib>Bhattacharya, Sweta ; Kumar Reddy Maddikunta, Praveen ; Meenakshisundaram, Iyapparaja ; Reddy Gadekallu, Thippa ; Sharma, Sparsh ; Alkahtani, Mohammed ; Haider Abidi, Mustufa</creatorcontrib><description>The Internet of Things (IoT) and related applications have witnessed enormous growth since its inception. The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain. Although the applicability of these applications are predominant, battery life remains to be a major challenge for IoT devices, wherein unreliability and shortened life would make an IoT application completely useless. In this work, an optimized deep neural networks based model is used to predict the battery life of the IoT systems. The present study uses the Chicago Park Beach dataset collected from the publicly available data repository for the experimentation of the proposed methodology. The dataset is pre-processed using the attribute mean technique eliminating the missing values and then One-Hot encoding technique is implemented to convert it to numerical format. This processed data is normalized using the Standard Scaler technique. Moth Flame Optimization (MFO) Algorithm is then implemented for selecting the optimal features in the dataset. These optimal features are finally fed into the DNN model and the results generated are evaluated against the state-of-the-art models, which justify the superiority of the proposed MFO-DNN model.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2021.016229</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Artificial neural networks ; Datasets ; Experimentation ; Internet of Things ; Life prediction ; Neural networks ; Optimization</subject><ispartof>Computers, materials &amp; continua, 2021, Vol.69 (2), p.2599-2615</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-c4b9f1c849dc78691db3047c88548a527b7615142e0e2c3c81260f8a288bf4c73</citedby><cites>FETCH-LOGICAL-c313t-c4b9f1c849dc78691db3047c88548a527b7615142e0e2c3c81260f8a288bf4c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Bhattacharya, Sweta</creatorcontrib><creatorcontrib>Kumar Reddy Maddikunta, Praveen</creatorcontrib><creatorcontrib>Meenakshisundaram, Iyapparaja</creatorcontrib><creatorcontrib>Reddy Gadekallu, Thippa</creatorcontrib><creatorcontrib>Sharma, Sparsh</creatorcontrib><creatorcontrib>Alkahtani, Mohammed</creatorcontrib><creatorcontrib>Haider Abidi, Mustufa</creatorcontrib><title>Deep Neural Networks Based Approach for Battery Life Prediction</title><title>Computers, materials &amp; continua</title><description>The Internet of Things (IoT) and related applications have witnessed enormous growth since its inception. The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain. Although the applicability of these applications are predominant, battery life remains to be a major challenge for IoT devices, wherein unreliability and shortened life would make an IoT application completely useless. In this work, an optimized deep neural networks based model is used to predict the battery life of the IoT systems. The present study uses the Chicago Park Beach dataset collected from the publicly available data repository for the experimentation of the proposed methodology. The dataset is pre-processed using the attribute mean technique eliminating the missing values and then One-Hot encoding technique is implemented to convert it to numerical format. This processed data is normalized using the Standard Scaler technique. Moth Flame Optimization (MFO) Algorithm is then implemented for selecting the optimal features in the dataset. These optimal features are finally fed into the DNN model and the results generated are evaluated against the state-of-the-art models, which justify the superiority of the proposed MFO-DNN model.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Experimentation</subject><subject>Internet of Things</subject><subject>Life prediction</subject><subject>Neural networks</subject><subject>Optimization</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwM0ZiTrHPjuNMqJRPKQIGmC3nYouUtgm2I9T_HkMYmN7T6ene3Y-Qc0YXHCQVl7jFBVBgC8okQHVAZqwQMgcAefjPH5OTENaUcskrOiNXN9YO2ZMdvdkkiV-9_wjZtQm2zZbD4HuD75nrfRrFaP0-qztnsxdv2w5j1-9OyZEzm2DP_nRO3u5uX1cPef18_7ha1jlyxmOOoqkcQyWqFkslK9Y2nIoSlSqEMgWUTSlZwQRYagE5KpZ-csqAUo0TWPI5uZj2ppM-RxuiXvej36VKDUVRMsGBqpSiUwp9H4K3Tg--2xq_14zqX0w6YdI_mPSEiX8DmAtY-A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bhattacharya, Sweta</creator><creator>Kumar Reddy Maddikunta, Praveen</creator><creator>Meenakshisundaram, Iyapparaja</creator><creator>Reddy Gadekallu, Thippa</creator><creator>Sharma, Sparsh</creator><creator>Alkahtani, Mohammed</creator><creator>Haider Abidi, Mustufa</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2021</creationdate><title>Deep Neural Networks Based Approach for Battery Life Prediction</title><author>Bhattacharya, Sweta ; Kumar Reddy Maddikunta, Praveen ; Meenakshisundaram, Iyapparaja ; Reddy Gadekallu, Thippa ; Sharma, Sparsh ; Alkahtani, Mohammed ; Haider Abidi, Mustufa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-c4b9f1c849dc78691db3047c88548a527b7615142e0e2c3c81260f8a288bf4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Experimentation</topic><topic>Internet of Things</topic><topic>Life prediction</topic><topic>Neural networks</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, Sweta</creatorcontrib><creatorcontrib>Kumar Reddy Maddikunta, Praveen</creatorcontrib><creatorcontrib>Meenakshisundaram, Iyapparaja</creatorcontrib><creatorcontrib>Reddy Gadekallu, Thippa</creatorcontrib><creatorcontrib>Sharma, Sparsh</creatorcontrib><creatorcontrib>Alkahtani, Mohammed</creatorcontrib><creatorcontrib>Haider Abidi, Mustufa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, Sweta</au><au>Kumar Reddy Maddikunta, Praveen</au><au>Meenakshisundaram, Iyapparaja</au><au>Reddy Gadekallu, Thippa</au><au>Sharma, Sparsh</au><au>Alkahtani, Mohammed</au><au>Haider Abidi, Mustufa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Networks Based Approach for Battery Life Prediction</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2021</date><risdate>2021</risdate><volume>69</volume><issue>2</issue><spage>2599</spage><epage>2615</epage><pages>2599-2615</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>The Internet of Things (IoT) and related applications have witnessed enormous growth since its inception. The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain. Although the applicability of these applications are predominant, battery life remains to be a major challenge for IoT devices, wherein unreliability and shortened life would make an IoT application completely useless. In this work, an optimized deep neural networks based model is used to predict the battery life of the IoT systems. The present study uses the Chicago Park Beach dataset collected from the publicly available data repository for the experimentation of the proposed methodology. The dataset is pre-processed using the attribute mean technique eliminating the missing values and then One-Hot encoding technique is implemented to convert it to numerical format. This processed data is normalized using the Standard Scaler technique. Moth Flame Optimization (MFO) Algorithm is then implemented for selecting the optimal features in the dataset. These optimal features are finally fed into the DNN model and the results generated are evaluated against the state-of-the-art models, which justify the superiority of the proposed MFO-DNN model.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2021.016229</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2021, Vol.69 (2), p.2599-2615
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2557143208
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial neural networks
Datasets
Experimentation
Internet of Things
Life prediction
Neural networks
Optimization
title Deep Neural Networks Based Approach for Battery Life Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Networks%20Based%20Approach%20for%20Battery%20Life%20Prediction&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Bhattacharya,%20Sweta&rft.date=2021&rft.volume=69&rft.issue=2&rft.spage=2599&rft.epage=2615&rft.pages=2599-2615&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2021.016229&rft_dat=%3Cproquest_cross%3E2557143208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557143208&rft_id=info:pmid/&rfr_iscdi=true