Remarks on Joachimsthal Integral and Poritsky Property

The billiard in an ellipse has a conserved quantity, the Joachimsthal integral. We show that the existence of such an integral characterizes conics. We extend this result to the spherical and hyperbolic geometries and to higher dimensions. We connect the existence of Joachimsthal integral with the P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arnold mathematical journal 2021-09, Vol.7 (3), p.483-491
Hauptverfasser: Arnold, Maxim, Tabachnikov, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The billiard in an ellipse has a conserved quantity, the Joachimsthal integral. We show that the existence of such an integral characterizes conics. We extend this result to the spherical and hyperbolic geometries and to higher dimensions. We connect the existence of Joachimsthal integral with the Poritsky property, a property of billiard curves, called so after H. Poritsky whose important paper Poritsky (Ann Math 51:446–470, 1950) was one of the early studies of the billiard problem.
ISSN:2199-6792
2199-6806
DOI:10.1007/s40598-021-00180-0