Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains

We prove local pointwise second derivative estimates for positive W 2 , p solutions to the σ k -Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-10, Vol.60 (5), Article 177
Hauptverfasser: Duncan, Jonah A. J., Nguyen, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 60
creator Duncan, Jonah A. J.
Nguyen, Luc
description We prove local pointwise second derivative estimates for positive W 2 , p solutions to the σ k -Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.
doi_str_mv 10.1007/s00526-021-02051-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557060467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557060467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3bf3c34588723c840f2e098d1955f965c2db148c3fbde5178029a542faaa7f883</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEObB-Jc4RVeUhVeICB06W69glJY1T2ynizAfySxiKxA1pH4edmdUMQucELglAdRUBBC0LoCQ3iDwP0IRwRguQTByiCdScF7Qs62N0EuMagAhJ-QQNC290hwff9umtjRZHa3zf4MaGdqdTu7PYxtRudLIROx9wTMH3Kxx9N6bW9xEnj9OLxZ8fr8Wz3uhlJmxH_X3Dueaj6drG6h43fqPbPp6iI6e7aM9-9xQ93cwfZ3fF4uH2fna9KAwrWSrY0jHDuJCyosxIDo5aqGVDaiFcXQpDmyXh0jC3bKwglQRaa8Gp01pXTko2RRd73SH47Zg9qLUfQ59fKipEBSXwssooukeZ4GMM1qkhZLPhXRFQ38mqfbIqJ6t-klWQSWxPihncr2z4k_6H9QXEdH17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557060467</pqid></control><display><type>article</type><title>Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains</title><source>SpringerLink Journals - AutoHoldings</source><creator>Duncan, Jonah A. J. ; Nguyen, Luc</creator><creatorcontrib>Duncan, Jonah A. J. ; Nguyen, Luc</creatorcontrib><description>We prove local pointwise second derivative estimates for positive W 2 , p solutions to the σ k -Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-021-02051-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Domains ; Estimates ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2021-10, Vol.60 (5), Article 177</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3bf3c34588723c840f2e098d1955f965c2db148c3fbde5178029a542faaa7f883</citedby><cites>FETCH-LOGICAL-c363t-3bf3c34588723c840f2e098d1955f965c2db148c3fbde5178029a542faaa7f883</cites><orcidid>0000-0002-6095-4055 ; 0000-0002-1364-4433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-021-02051-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-021-02051-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Duncan, Jonah A. J.</creatorcontrib><creatorcontrib>Nguyen, Luc</creatorcontrib><title>Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We prove local pointwise second derivative estimates for positive W 2 , p solutions to the σ k -Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Domains</subject><subject>Estimates</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEObB-Jc4RVeUhVeICB06W69glJY1T2ynizAfySxiKxA1pH4edmdUMQucELglAdRUBBC0LoCQ3iDwP0IRwRguQTByiCdScF7Qs62N0EuMagAhJ-QQNC290hwff9umtjRZHa3zf4MaGdqdTu7PYxtRudLIROx9wTMH3Kxx9N6bW9xEnj9OLxZ8fr8Wz3uhlJmxH_X3Dueaj6drG6h43fqPbPp6iI6e7aM9-9xQ93cwfZ3fF4uH2fna9KAwrWSrY0jHDuJCyosxIDo5aqGVDaiFcXQpDmyXh0jC3bKwglQRaa8Gp01pXTko2RRd73SH47Zg9qLUfQ59fKipEBSXwssooukeZ4GMM1qkhZLPhXRFQ38mqfbIqJ6t-klWQSWxPihncr2z4k_6H9QXEdH17</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Duncan, Jonah A. J.</creator><creator>Nguyen, Luc</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-6095-4055</orcidid><orcidid>https://orcid.org/0000-0002-1364-4433</orcidid></search><sort><creationdate>20211001</creationdate><title>Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains</title><author>Duncan, Jonah A. J. ; Nguyen, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3bf3c34588723c840f2e098d1955f965c2db148c3fbde5178029a542faaa7f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Domains</topic><topic>Estimates</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duncan, Jonah A. J.</creatorcontrib><creatorcontrib>Nguyen, Luc</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duncan, Jonah A. J.</au><au>Nguyen, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>60</volume><issue>5</issue><artnum>177</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We prove local pointwise second derivative estimates for positive W 2 , p solutions to the σ k -Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-021-02051-0</doi><orcidid>https://orcid.org/0000-0002-6095-4055</orcidid><orcidid>https://orcid.org/0000-0002-1364-4433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2021-10, Vol.60 (5), Article 177
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2557060467
source SpringerLink Journals - AutoHoldings
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Domains
Estimates
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Systems Theory
Theoretical
title Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20pointwise%20second%20derivative%20estimates%20for%20strong%20solutions%20to%20the%20%CF%83k-Yamabe%20equation%20on%20Euclidean%20domains&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Duncan,%20Jonah%20A.%20J.&rft.date=2021-10-01&rft.volume=60&rft.issue=5&rft.artnum=177&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-021-02051-0&rft_dat=%3Cproquest_cross%3E2557060467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557060467&rft_id=info:pmid/&rfr_iscdi=true