Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains
We prove local pointwise second derivative estimates for positive W 2 , p solutions to the σ k -Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2021-10, Vol.60 (5), Article 177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 60 |
creator | Duncan, Jonah A. J. Nguyen, Luc |
description | We prove local pointwise second derivative estimates for positive
W
2
,
p
solutions to the
σ
k
-Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered. |
doi_str_mv | 10.1007/s00526-021-02051-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557060467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557060467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3bf3c34588723c840f2e098d1955f965c2db148c3fbde5178029a542faaa7f883</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEObB-Jc4RVeUhVeICB06W69glJY1T2ynizAfySxiKxA1pH4edmdUMQucELglAdRUBBC0LoCQ3iDwP0IRwRguQTByiCdScF7Qs62N0EuMagAhJ-QQNC290hwff9umtjRZHa3zf4MaGdqdTu7PYxtRudLIROx9wTMH3Kxx9N6bW9xEnj9OLxZ8fr8Wz3uhlJmxH_X3Dueaj6drG6h43fqPbPp6iI6e7aM9-9xQ93cwfZ3fF4uH2fna9KAwrWSrY0jHDuJCyosxIDo5aqGVDaiFcXQpDmyXh0jC3bKwglQRaa8Gp01pXTko2RRd73SH47Zg9qLUfQ59fKipEBSXwssooukeZ4GMM1qkhZLPhXRFQ38mqfbIqJ6t-klWQSWxPihncr2z4k_6H9QXEdH17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557060467</pqid></control><display><type>article</type><title>Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains</title><source>SpringerLink Journals - AutoHoldings</source><creator>Duncan, Jonah A. J. ; Nguyen, Luc</creator><creatorcontrib>Duncan, Jonah A. J. ; Nguyen, Luc</creatorcontrib><description>We prove local pointwise second derivative estimates for positive
W
2
,
p
solutions to the
σ
k
-Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-021-02051-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Domains ; Estimates ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2021-10, Vol.60 (5), Article 177</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3bf3c34588723c840f2e098d1955f965c2db148c3fbde5178029a542faaa7f883</citedby><cites>FETCH-LOGICAL-c363t-3bf3c34588723c840f2e098d1955f965c2db148c3fbde5178029a542faaa7f883</cites><orcidid>0000-0002-6095-4055 ; 0000-0002-1364-4433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-021-02051-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-021-02051-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Duncan, Jonah A. J.</creatorcontrib><creatorcontrib>Nguyen, Luc</creatorcontrib><title>Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We prove local pointwise second derivative estimates for positive
W
2
,
p
solutions to the
σ
k
-Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Domains</subject><subject>Estimates</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEObB-Jc4RVeUhVeICB06W69glJY1T2ynizAfySxiKxA1pH4edmdUMQucELglAdRUBBC0LoCQ3iDwP0IRwRguQTByiCdScF7Qs62N0EuMagAhJ-QQNC290hwff9umtjRZHa3zf4MaGdqdTu7PYxtRudLIROx9wTMH3Kxx9N6bW9xEnj9OLxZ8fr8Wz3uhlJmxH_X3Dueaj6drG6h43fqPbPp6iI6e7aM9-9xQ93cwfZ3fF4uH2fna9KAwrWSrY0jHDuJCyosxIDo5aqGVDaiFcXQpDmyXh0jC3bKwglQRaa8Gp01pXTko2RRd73SH47Zg9qLUfQ59fKipEBSXwssooukeZ4GMM1qkhZLPhXRFQ38mqfbIqJ6t-klWQSWxPihncr2z4k_6H9QXEdH17</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Duncan, Jonah A. J.</creator><creator>Nguyen, Luc</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-6095-4055</orcidid><orcidid>https://orcid.org/0000-0002-1364-4433</orcidid></search><sort><creationdate>20211001</creationdate><title>Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains</title><author>Duncan, Jonah A. J. ; Nguyen, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3bf3c34588723c840f2e098d1955f965c2db148c3fbde5178029a542faaa7f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Domains</topic><topic>Estimates</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duncan, Jonah A. J.</creatorcontrib><creatorcontrib>Nguyen, Luc</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duncan, Jonah A. J.</au><au>Nguyen, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>60</volume><issue>5</issue><artnum>177</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We prove local pointwise second derivative estimates for positive
W
2
,
p
solutions to the
σ
k
-Yamabe equation on Euclidean domains, addressing both the positive and negative cases. Generalisations for augmented Hessian equations are also considered.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-021-02051-0</doi><orcidid>https://orcid.org/0000-0002-6095-4055</orcidid><orcidid>https://orcid.org/0000-0002-1364-4433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2021-10, Vol.60 (5), Article 177 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2557060467 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Domains Estimates Mathematical and Computational Physics Mathematics Mathematics and Statistics Systems Theory Theoretical |
title | Local pointwise second derivative estimates for strong solutions to the σk-Yamabe equation on Euclidean domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20pointwise%20second%20derivative%20estimates%20for%20strong%20solutions%20to%20the%20%CF%83k-Yamabe%20equation%20on%20Euclidean%20domains&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Duncan,%20Jonah%20A.%20J.&rft.date=2021-10-01&rft.volume=60&rft.issue=5&rft.artnum=177&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-021-02051-0&rft_dat=%3Cproquest_cross%3E2557060467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557060467&rft_id=info:pmid/&rfr_iscdi=true |