Variable Gain Iterative Learning Control with Forgetting Factor

In order to improve the convergence speed of iterative learning control and reduce the fluctuation of the system error, a class of linear steady-state systems is considered. The convergence of the algorithm and error fluctuations are studied by introducing the variable-gain idea into the D-type iter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2018-07, Vol.394 (5), p.52082
Hauptverfasser: Gan, Yizhen, Zeng, Qingshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 52082
container_title IOP conference series. Materials Science and Engineering
container_volume 394
creator Gan, Yizhen
Zeng, Qingshan
description In order to improve the convergence speed of iterative learning control and reduce the fluctuation of the system error, a class of linear steady-state systems is considered. The convergence of the algorithm and error fluctuations are studied by introducing the variable-gain idea into the D-type iterative learning control algorithm with variable forgetting factor. According to the related properties of the λ norm theory, the convergence of the improved iterative learning algorithm is proved. Compared with iterative learning control with forgetting factor and iterative learning control with variable gain, MATLAB simulation analysis is performed. The simulation results show that the algorithm is effective. The improved iterative learning law not only makes the iterative error smoother, but also improves the convergence speed.
doi_str_mv 10.1088/1757-899X/394/5/052082
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2557057377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557057377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2692-f91f96e4739055dacc88cffb50370db26c8ef743cd2983c6d4da7b4230d2bcdd3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFb_ggS8eInZ7Ed29yRS2lqoePADb8tmP2pKzcbNtuK_NyFSEQRPM8y8zww8AJzn8CqHnGc5oyzlQrxkWJCMZpAiyNEBGO0Xh_ue58fgpG3XEBaMEDgC188qVKrc2GSuqjpZRBtUrHY2WVoV6qpeJRNfx-A3yUcVX5OZDysbYz-fKR19OAVHTm1ae_Zdx-BpNn2c3KbL-_licrNMNSoESp3InSgsYVhASo3SmnPtXEkhZtCUqNDcOkawNkhwrAtDjGIlQRgaVGpj8BhcDHeb4N-3to1y7beh7l5KRCmDlGHGulQxpHTwbRusk02o3lT4lDmUvSzZe5C9E9nJklQOsjoQDWDlm5_L_0KXf0B3D9NfMdkYh78AV1t5Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557057377</pqid></control><display><type>article</type><title>Variable Gain Iterative Learning Control with Forgetting Factor</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Gan, Yizhen ; Zeng, Qingshan</creator><creatorcontrib>Gan, Yizhen ; Zeng, Qingshan</creatorcontrib><description>In order to improve the convergence speed of iterative learning control and reduce the fluctuation of the system error, a class of linear steady-state systems is considered. The convergence of the algorithm and error fluctuations are studied by introducing the variable-gain idea into the D-type iterative learning control algorithm with variable forgetting factor. According to the related properties of the λ norm theory, the convergence of the improved iterative learning algorithm is proved. Compared with iterative learning control with forgetting factor and iterative learning control with variable gain, MATLAB simulation analysis is performed. The simulation results show that the algorithm is effective. The improved iterative learning law not only makes the iterative error smoother, but also improves the convergence speed.</description><identifier>ISSN: 1757-8981</identifier><identifier>ISSN: 1757-899X</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/394/5/052082</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Control algorithms ; Control theory ; Convergence ; Error analysis ; Machine learning ; Variable gain</subject><ispartof>IOP conference series. Materials Science and Engineering, 2018-07, Vol.394 (5), p.52082</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2692-f91f96e4739055dacc88cffb50370db26c8ef743cd2983c6d4da7b4230d2bcdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/394/5/052082/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Gan, Yizhen</creatorcontrib><creatorcontrib>Zeng, Qingshan</creatorcontrib><title>Variable Gain Iterative Learning Control with Forgetting Factor</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>In order to improve the convergence speed of iterative learning control and reduce the fluctuation of the system error, a class of linear steady-state systems is considered. The convergence of the algorithm and error fluctuations are studied by introducing the variable-gain idea into the D-type iterative learning control algorithm with variable forgetting factor. According to the related properties of the λ norm theory, the convergence of the improved iterative learning algorithm is proved. Compared with iterative learning control with forgetting factor and iterative learning control with variable gain, MATLAB simulation analysis is performed. The simulation results show that the algorithm is effective. The improved iterative learning law not only makes the iterative error smoother, but also improves the convergence speed.</description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Error analysis</subject><subject>Machine learning</subject><subject>Variable gain</subject><issn>1757-8981</issn><issn>1757-899X</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE1Lw0AQhhdRsFb_ggS8eInZ7Ed29yRS2lqoePADb8tmP2pKzcbNtuK_NyFSEQRPM8y8zww8AJzn8CqHnGc5oyzlQrxkWJCMZpAiyNEBGO0Xh_ue58fgpG3XEBaMEDgC188qVKrc2GSuqjpZRBtUrHY2WVoV6qpeJRNfx-A3yUcVX5OZDysbYz-fKR19OAVHTm1ae_Zdx-BpNn2c3KbL-_licrNMNSoESp3InSgsYVhASo3SmnPtXEkhZtCUqNDcOkawNkhwrAtDjGIlQRgaVGpj8BhcDHeb4N-3to1y7beh7l5KRCmDlGHGulQxpHTwbRusk02o3lT4lDmUvSzZe5C9E9nJklQOsjoQDWDlm5_L_0KXf0B3D9NfMdkYh78AV1t5Bg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Gan, Yizhen</creator><creator>Zeng, Qingshan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180701</creationdate><title>Variable Gain Iterative Learning Control with Forgetting Factor</title><author>Gan, Yizhen ; Zeng, Qingshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2692-f91f96e4739055dacc88cffb50370db26c8ef743cd2983c6d4da7b4230d2bcdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Error analysis</topic><topic>Machine learning</topic><topic>Variable gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Yizhen</creatorcontrib><creatorcontrib>Zeng, Qingshan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Yizhen</au><au>Zeng, Qingshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Gain Iterative Learning Control with Forgetting Factor</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>394</volume><issue>5</issue><spage>52082</spage><pages>52082-</pages><issn>1757-8981</issn><issn>1757-899X</issn><eissn>1757-899X</eissn><abstract>In order to improve the convergence speed of iterative learning control and reduce the fluctuation of the system error, a class of linear steady-state systems is considered. The convergence of the algorithm and error fluctuations are studied by introducing the variable-gain idea into the D-type iterative learning control algorithm with variable forgetting factor. According to the related properties of the λ norm theory, the convergence of the improved iterative learning algorithm is proved. Compared with iterative learning control with forgetting factor and iterative learning control with variable gain, MATLAB simulation analysis is performed. The simulation results show that the algorithm is effective. The improved iterative learning law not only makes the iterative error smoother, but also improves the convergence speed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/394/5/052082</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2018-07, Vol.394 (5), p.52082
issn 1757-8981
1757-899X
1757-899X
language eng
recordid cdi_proquest_journals_2557057377
source Institute of Physics IOPscience extra; IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Algorithms
Control algorithms
Control theory
Convergence
Error analysis
Machine learning
Variable gain
title Variable Gain Iterative Learning Control with Forgetting Factor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Gain%20Iterative%20Learning%20Control%20with%20Forgetting%20Factor&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Gan,%20Yizhen&rft.date=2018-07-01&rft.volume=394&rft.issue=5&rft.spage=52082&rft.pages=52082-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/394/5/052082&rft_dat=%3Cproquest_iop_j%3E2557057377%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557057377&rft_id=info:pmid/&rfr_iscdi=true