Spiral structures in gravito-turbulent gaseous disks

Context. Gravitational instabilities can drive small-scale turbulence and large-scale spiral arms in massive gaseous disks under conditions of slow radiative cooling. These motions affect the observed disk morphology, its mass accretion rate and variability, and could control the process of planet f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-06, Vol.650, p.A49
Hauptverfasser: Béthune, William, Latter, Henrik, Kley, Wilhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A49
container_title Astronomy and astrophysics (Berlin)
container_volume 650
creator Béthune, William
Latter, Henrik
Kley, Wilhelm
description Context. Gravitational instabilities can drive small-scale turbulence and large-scale spiral arms in massive gaseous disks under conditions of slow radiative cooling. These motions affect the observed disk morphology, its mass accretion rate and variability, and could control the process of planet formation via dust grain concentration, processing, and collisional fragmentation. Aims. We study gravito-turbulence and its associated spiral structure in thin gaseous disks subject to a prescribed cooling law. We characterize the morphology, coherence, and propagation of the spirals and examine when the flow deviates from viscous disk models. Methods. We used the finite-volume code P LUTO to integrate the equations of self-gravitating hydrodynamics in three-dimensional spherical geometry. The gas was cooled over longer-than-orbital timescales to trigger the gravitational instability and sustain turbulence. We ran models for various disk masses and cooling rates. Results. In all cases considered, the turbulent gravitational stress transports angular momentum outward at a rate compatible with viscous disk theory. The dissipation of orbital energy happens via shocks in spiral density wakes, heating the disk back to a marginally stable thermal equilibrium. These wakes drive vertical motions and contribute to mix material from the disk with its corona. They are formed and destroyed intermittently, and they nearly corotate with the gas at every radius. As a consequence, large-scale spiral arms exhibit no long-term global coherence, and energy thermalization is an essentially local process. Conclusions. In the absence of radial substructures or tidal forcing, and provided a local cooling law, gravito-turbulence reduces to a local phenomenon in thin gaseous disks.
doi_str_mv 10.1051/0004-6361/202040094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557048754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557048754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-19390a19d6bf916ead74f8efc5baa3456b1dd9e04965f842bf912bc50ff2e0e33</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoWEd_gZuC6zg3zyZLGdQRBlyo65C2ydCxtjUPwX9vy8isLufycQ7nIHRL4J6AIGsA4FgySdYUKHAAzc9QQTijGCouz1FxIi7RVYyHWVKiWIH429QF25cxhdykHFwsu6HcB_vTpRHPjzr3bkjl3kY35li2XfyM1-jC2z66m_-7Qh9Pj--bLd69Pr9sHna4YUolTDTTYIluZe01kc62FffK-UbU1jIuZE3aVjvgWgqvOF0oWjcCvKcOHGMrdHf0ncL4nV1M5jDmMMyRhgpRAVeV4DPFjlQTxhiD82YK3ZcNv4aAWeYxS3mzlDenedgf4HdXkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557048754</pqid></control><display><type>article</type><title>Spiral structures in gravito-turbulent gaseous disks</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Béthune, William ; Latter, Henrik ; Kley, Wilhelm</creator><creatorcontrib>Béthune, William ; Latter, Henrik ; Kley, Wilhelm</creatorcontrib><description>Context. Gravitational instabilities can drive small-scale turbulence and large-scale spiral arms in massive gaseous disks under conditions of slow radiative cooling. These motions affect the observed disk morphology, its mass accretion rate and variability, and could control the process of planet formation via dust grain concentration, processing, and collisional fragmentation. Aims. We study gravito-turbulence and its associated spiral structure in thin gaseous disks subject to a prescribed cooling law. We characterize the morphology, coherence, and propagation of the spirals and examine when the flow deviates from viscous disk models. Methods. We used the finite-volume code P LUTO to integrate the equations of self-gravitating hydrodynamics in three-dimensional spherical geometry. The gas was cooled over longer-than-orbital timescales to trigger the gravitational instability and sustain turbulence. We ran models for various disk masses and cooling rates. Results. In all cases considered, the turbulent gravitational stress transports angular momentum outward at a rate compatible with viscous disk theory. The dissipation of orbital energy happens via shocks in spiral density wakes, heating the disk back to a marginally stable thermal equilibrium. These wakes drive vertical motions and contribute to mix material from the disk with its corona. They are formed and destroyed intermittently, and they nearly corotate with the gas at every radius. As a consequence, large-scale spiral arms exhibit no long-term global coherence, and energy thermalization is an essentially local process. Conclusions. In the absence of radial substructures or tidal forcing, and provided a local cooling law, gravito-turbulence reduces to a local phenomenon in thin gaseous disks.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202040094</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Accretion disks ; Angular momentum ; Computational fluid dynamics ; Cooling ; Cooling rate ; Energy dissipation ; Fluid flow ; Gravitation ; Gravitational instability ; Hydrodynamics ; Morphology ; Planet formation ; Spirals ; Thermalization (energy absorption) ; Turbulence ; Wakes</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-06, Vol.650, p.A49</ispartof><rights>Copyright EDP Sciences Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-19390a19d6bf916ead74f8efc5baa3456b1dd9e04965f842bf912bc50ff2e0e33</citedby><cites>FETCH-LOGICAL-c388t-19390a19d6bf916ead74f8efc5baa3456b1dd9e04965f842bf912bc50ff2e0e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids></links><search><creatorcontrib>Béthune, William</creatorcontrib><creatorcontrib>Latter, Henrik</creatorcontrib><creatorcontrib>Kley, Wilhelm</creatorcontrib><title>Spiral structures in gravito-turbulent gaseous disks</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Gravitational instabilities can drive small-scale turbulence and large-scale spiral arms in massive gaseous disks under conditions of slow radiative cooling. These motions affect the observed disk morphology, its mass accretion rate and variability, and could control the process of planet formation via dust grain concentration, processing, and collisional fragmentation. Aims. We study gravito-turbulence and its associated spiral structure in thin gaseous disks subject to a prescribed cooling law. We characterize the morphology, coherence, and propagation of the spirals and examine when the flow deviates from viscous disk models. Methods. We used the finite-volume code P LUTO to integrate the equations of self-gravitating hydrodynamics in three-dimensional spherical geometry. The gas was cooled over longer-than-orbital timescales to trigger the gravitational instability and sustain turbulence. We ran models for various disk masses and cooling rates. Results. In all cases considered, the turbulent gravitational stress transports angular momentum outward at a rate compatible with viscous disk theory. The dissipation of orbital energy happens via shocks in spiral density wakes, heating the disk back to a marginally stable thermal equilibrium. These wakes drive vertical motions and contribute to mix material from the disk with its corona. They are formed and destroyed intermittently, and they nearly corotate with the gas at every radius. As a consequence, large-scale spiral arms exhibit no long-term global coherence, and energy thermalization is an essentially local process. Conclusions. In the absence of radial substructures or tidal forcing, and provided a local cooling law, gravito-turbulence reduces to a local phenomenon in thin gaseous disks.</description><subject>Accretion disks</subject><subject>Angular momentum</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Energy dissipation</subject><subject>Fluid flow</subject><subject>Gravitation</subject><subject>Gravitational instability</subject><subject>Hydrodynamics</subject><subject>Morphology</subject><subject>Planet formation</subject><subject>Spirals</subject><subject>Thermalization (energy absorption)</subject><subject>Turbulence</subject><subject>Wakes</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoWEd_gZuC6zg3zyZLGdQRBlyo65C2ydCxtjUPwX9vy8isLufycQ7nIHRL4J6AIGsA4FgySdYUKHAAzc9QQTijGCouz1FxIi7RVYyHWVKiWIH429QF25cxhdykHFwsu6HcB_vTpRHPjzr3bkjl3kY35li2XfyM1-jC2z66m_-7Qh9Pj--bLd69Pr9sHna4YUolTDTTYIluZe01kc62FffK-UbU1jIuZE3aVjvgWgqvOF0oWjcCvKcOHGMrdHf0ncL4nV1M5jDmMMyRhgpRAVeV4DPFjlQTxhiD82YK3ZcNv4aAWeYxS3mzlDenedgf4HdXkA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Béthune, William</creator><creator>Latter, Henrik</creator><creator>Kley, Wilhelm</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210601</creationdate><title>Spiral structures in gravito-turbulent gaseous disks</title><author>Béthune, William ; Latter, Henrik ; Kley, Wilhelm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-19390a19d6bf916ead74f8efc5baa3456b1dd9e04965f842bf912bc50ff2e0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accretion disks</topic><topic>Angular momentum</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Energy dissipation</topic><topic>Fluid flow</topic><topic>Gravitation</topic><topic>Gravitational instability</topic><topic>Hydrodynamics</topic><topic>Morphology</topic><topic>Planet formation</topic><topic>Spirals</topic><topic>Thermalization (energy absorption)</topic><topic>Turbulence</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Béthune, William</creatorcontrib><creatorcontrib>Latter, Henrik</creatorcontrib><creatorcontrib>Kley, Wilhelm</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Béthune, William</au><au>Latter, Henrik</au><au>Kley, Wilhelm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiral structures in gravito-turbulent gaseous disks</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>650</volume><spage>A49</spage><pages>A49-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. Gravitational instabilities can drive small-scale turbulence and large-scale spiral arms in massive gaseous disks under conditions of slow radiative cooling. These motions affect the observed disk morphology, its mass accretion rate and variability, and could control the process of planet formation via dust grain concentration, processing, and collisional fragmentation. Aims. We study gravito-turbulence and its associated spiral structure in thin gaseous disks subject to a prescribed cooling law. We characterize the morphology, coherence, and propagation of the spirals and examine when the flow deviates from viscous disk models. Methods. We used the finite-volume code P LUTO to integrate the equations of self-gravitating hydrodynamics in three-dimensional spherical geometry. The gas was cooled over longer-than-orbital timescales to trigger the gravitational instability and sustain turbulence. We ran models for various disk masses and cooling rates. Results. In all cases considered, the turbulent gravitational stress transports angular momentum outward at a rate compatible with viscous disk theory. The dissipation of orbital energy happens via shocks in spiral density wakes, heating the disk back to a marginally stable thermal equilibrium. These wakes drive vertical motions and contribute to mix material from the disk with its corona. They are formed and destroyed intermittently, and they nearly corotate with the gas at every radius. As a consequence, large-scale spiral arms exhibit no long-term global coherence, and energy thermalization is an essentially local process. Conclusions. In the absence of radial substructures or tidal forcing, and provided a local cooling law, gravito-turbulence reduces to a local phenomenon in thin gaseous disks.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202040094</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2021-06, Vol.650, p.A49
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2557048754
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Accretion disks
Angular momentum
Computational fluid dynamics
Cooling
Cooling rate
Energy dissipation
Fluid flow
Gravitation
Gravitational instability
Hydrodynamics
Morphology
Planet formation
Spirals
Thermalization (energy absorption)
Turbulence
Wakes
title Spiral structures in gravito-turbulent gaseous disks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiral%20structures%20in%20gravito-turbulent%20gaseous%20disks&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=B%C3%A9thune,%20William&rft.date=2021-06-01&rft.volume=650&rft.spage=A49&rft.pages=A49-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202040094&rft_dat=%3Cproquest_cross%3E2557048754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557048754&rft_id=info:pmid/&rfr_iscdi=true