New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes
This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the tr...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2021-05, Vol.55 (3), p.1005-1037 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1037 |
---|---|
container_issue | 3 |
container_start_page | 1005 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 55 |
creator | Devloo, Philippe R. B. Farias, Agnaldo M. Gomes, Sônia M. Pereira, Weslley dos Santos, Antonio J. B. Valentin, Frédéric |
description | This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced
via
the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the
H
(
div
) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the
L
2
-norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems. |
doi_str_mv | 10.1051/m2an/2021013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557048339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557048339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-4169ff1595db0d207e0718520d9eee11967109f98d14478c56c316c7430d49c63</originalsourceid><addsrcrecordid>eNotkE9LwzAYh4MoOKc3P0DAi4J175s_bXOUoU4YelHwVrokXTPaZiad2m9vx3b6XR5-PDyEXCM8IEictazsZgwYAvITMkGmIOG5wFMygSwVicz51zm5iHEDAAhCToh9s790QW-N-7lLtO8qH1rXrWm7a3oXddlYWg-r4EzSuj9raGv72ptIR472taW2KWPvtOsHug1-1diW-o5ufTOsfVc2Ix9rGy_JWVU20V4dd0o-n58-5otk-f7yOn9cJpqlvE8EpqqqUCppVmAYZBYyzCUDo6y1iCrNEFSlcoNCZLmWqeaY6kxwMELplE_JzeF3dPne2dgXG78Lo0csmJQZiJxzNVL3B0oHH2OwVbENri3DUCAU-5DFPmRxDMn_AVtoZa0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557048339</pqid></control><display><type>article</type><title>New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes</title><source>Alma/SFX Local Collection</source><creator>Devloo, Philippe R. B. ; Farias, Agnaldo M. ; Gomes, Sônia M. ; Pereira, Weslley ; dos Santos, Antonio J. B. ; Valentin, Frédéric</creator><creatorcontrib>Devloo, Philippe R. B. ; Farias, Agnaldo M. ; Gomes, Sônia M. ; Pereira, Weslley ; dos Santos, Antonio J. B. ; Valentin, Frédéric</creatorcontrib><description>This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced
via
the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the
H
(
div
) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the
L
2
-norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2021013</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Convergence ; Divergence ; Elasticity ; Finite element method ; Lagrange multiplier ; Mathematical analysis ; Mixed methods research ; Norms ; Polygons ; Polynomials ; Rigid structures ; Rotation ; Stress distribution ; Traction</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2021-05, Vol.55 (3), p.1005-1037</ispartof><rights>2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2021/04/m2an200167/m2an200167.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-4169ff1595db0d207e0718520d9eee11967109f98d14478c56c316c7430d49c63</citedby><cites>FETCH-LOGICAL-c263t-4169ff1595db0d207e0718520d9eee11967109f98d14478c56c316c7430d49c63</cites><orcidid>0000-0002-0500-6044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Devloo, Philippe R. B.</creatorcontrib><creatorcontrib>Farias, Agnaldo M.</creatorcontrib><creatorcontrib>Gomes, Sônia M.</creatorcontrib><creatorcontrib>Pereira, Weslley</creatorcontrib><creatorcontrib>dos Santos, Antonio J. B.</creatorcontrib><creatorcontrib>Valentin, Frédéric</creatorcontrib><title>New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced
via
the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the
H
(
div
) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the
L
2
-norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.</description><subject>Approximation</subject><subject>Convergence</subject><subject>Divergence</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mixed methods research</subject><subject>Norms</subject><subject>Polygons</subject><subject>Polynomials</subject><subject>Rigid structures</subject><subject>Rotation</subject><subject>Stress distribution</subject><subject>Traction</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE9LwzAYh4MoOKc3P0DAi4J175s_bXOUoU4YelHwVrokXTPaZiad2m9vx3b6XR5-PDyEXCM8IEictazsZgwYAvITMkGmIOG5wFMygSwVicz51zm5iHEDAAhCToh9s790QW-N-7lLtO8qH1rXrWm7a3oXddlYWg-r4EzSuj9raGv72ptIR472taW2KWPvtOsHug1-1diW-o5ufTOsfVc2Ix9rGy_JWVU20V4dd0o-n58-5otk-f7yOn9cJpqlvE8EpqqqUCppVmAYZBYyzCUDo6y1iCrNEFSlcoNCZLmWqeaY6kxwMELplE_JzeF3dPne2dgXG78Lo0csmJQZiJxzNVL3B0oHH2OwVbENri3DUCAU-5DFPmRxDMn_AVtoZa0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Devloo, Philippe R. B.</creator><creator>Farias, Agnaldo M.</creator><creator>Gomes, Sônia M.</creator><creator>Pereira, Weslley</creator><creator>dos Santos, Antonio J. B.</creator><creator>Valentin, Frédéric</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0500-6044</orcidid></search><sort><creationdate>20210501</creationdate><title>New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes</title><author>Devloo, Philippe R. B. ; Farias, Agnaldo M. ; Gomes, Sônia M. ; Pereira, Weslley ; dos Santos, Antonio J. B. ; Valentin, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-4169ff1595db0d207e0718520d9eee11967109f98d14478c56c316c7430d49c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Divergence</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mixed methods research</topic><topic>Norms</topic><topic>Polygons</topic><topic>Polynomials</topic><topic>Rigid structures</topic><topic>Rotation</topic><topic>Stress distribution</topic><topic>Traction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devloo, Philippe R. B.</creatorcontrib><creatorcontrib>Farias, Agnaldo M.</creatorcontrib><creatorcontrib>Gomes, Sônia M.</creatorcontrib><creatorcontrib>Pereira, Weslley</creatorcontrib><creatorcontrib>dos Santos, Antonio J. B.</creatorcontrib><creatorcontrib>Valentin, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devloo, Philippe R. B.</au><au>Farias, Agnaldo M.</au><au>Gomes, Sônia M.</au><au>Pereira, Weslley</au><au>dos Santos, Antonio J. B.</au><au>Valentin, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>55</volume><issue>3</issue><spage>1005</spage><epage>1037</epage><pages>1005-1037</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced
via
the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the
H
(
div
) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the
L
2
-norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2021013</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-0500-6044</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0764-583X |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2021-05, Vol.55 (3), p.1005-1037 |
issn | 0764-583X 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2557048339 |
source | Alma/SFX Local Collection |
subjects | Approximation Convergence Divergence Elasticity Finite element method Lagrange multiplier Mathematical analysis Mixed methods research Norms Polygons Polynomials Rigid structures Rotation Stress distribution Traction |
title | New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20H%20(div)-conforming%20multiscale%20hybrid-mixed%20methods%20for%20the%20elasticity%20problem%20on%20polygonal%20meshes&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Devloo,%20Philippe%20R.%20B.&rft.date=2021-05-01&rft.volume=55&rft.issue=3&rft.spage=1005&rft.epage=1037&rft.pages=1005-1037&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2021013&rft_dat=%3Cproquest_cross%3E2557048339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557048339&rft_id=info:pmid/&rfr_iscdi=true |