New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes

This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2021-05, Vol.55 (3), p.1005-1037
Hauptverfasser: Devloo, Philippe R. B., Farias, Agnaldo M., Gomes, Sônia M., Pereira, Weslley, dos Santos, Antonio J. B., Valentin, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1037
container_issue 3
container_start_page 1005
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 55
creator Devloo, Philippe R. B.
Farias, Agnaldo M.
Gomes, Sônia M.
Pereira, Weslley
dos Santos, Antonio J. B.
Valentin, Frédéric
description This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced via the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the H ( div ) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the L 2 -norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.
doi_str_mv 10.1051/m2an/2021013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557048339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557048339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-4169ff1595db0d207e0718520d9eee11967109f98d14478c56c316c7430d49c63</originalsourceid><addsrcrecordid>eNotkE9LwzAYh4MoOKc3P0DAi4J175s_bXOUoU4YelHwVrokXTPaZiad2m9vx3b6XR5-PDyEXCM8IEictazsZgwYAvITMkGmIOG5wFMygSwVicz51zm5iHEDAAhCToh9s790QW-N-7lLtO8qH1rXrWm7a3oXddlYWg-r4EzSuj9raGv72ptIR472taW2KWPvtOsHug1-1diW-o5ufTOsfVc2Ix9rGy_JWVU20V4dd0o-n58-5otk-f7yOn9cJpqlvE8EpqqqUCppVmAYZBYyzCUDo6y1iCrNEFSlcoNCZLmWqeaY6kxwMELplE_JzeF3dPne2dgXG78Lo0csmJQZiJxzNVL3B0oHH2OwVbENri3DUCAU-5DFPmRxDMn_AVtoZa0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557048339</pqid></control><display><type>article</type><title>New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes</title><source>Alma/SFX Local Collection</source><creator>Devloo, Philippe R. B. ; Farias, Agnaldo M. ; Gomes, Sônia M. ; Pereira, Weslley ; dos Santos, Antonio J. B. ; Valentin, Frédéric</creator><creatorcontrib>Devloo, Philippe R. B. ; Farias, Agnaldo M. ; Gomes, Sônia M. ; Pereira, Weslley ; dos Santos, Antonio J. B. ; Valentin, Frédéric</creatorcontrib><description>This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced via the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the H ( div ) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the L 2 -norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2021013</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Convergence ; Divergence ; Elasticity ; Finite element method ; Lagrange multiplier ; Mathematical analysis ; Mixed methods research ; Norms ; Polygons ; Polynomials ; Rigid structures ; Rotation ; Stress distribution ; Traction</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2021-05, Vol.55 (3), p.1005-1037</ispartof><rights>2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2021/04/m2an200167/m2an200167.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-4169ff1595db0d207e0718520d9eee11967109f98d14478c56c316c7430d49c63</citedby><cites>FETCH-LOGICAL-c263t-4169ff1595db0d207e0718520d9eee11967109f98d14478c56c316c7430d49c63</cites><orcidid>0000-0002-0500-6044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Devloo, Philippe R. B.</creatorcontrib><creatorcontrib>Farias, Agnaldo M.</creatorcontrib><creatorcontrib>Gomes, Sônia M.</creatorcontrib><creatorcontrib>Pereira, Weslley</creatorcontrib><creatorcontrib>dos Santos, Antonio J. B.</creatorcontrib><creatorcontrib>Valentin, Frédéric</creatorcontrib><title>New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced via the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the H ( div ) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the L 2 -norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.</description><subject>Approximation</subject><subject>Convergence</subject><subject>Divergence</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mixed methods research</subject><subject>Norms</subject><subject>Polygons</subject><subject>Polynomials</subject><subject>Rigid structures</subject><subject>Rotation</subject><subject>Stress distribution</subject><subject>Traction</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE9LwzAYh4MoOKc3P0DAi4J175s_bXOUoU4YelHwVrokXTPaZiad2m9vx3b6XR5-PDyEXCM8IEictazsZgwYAvITMkGmIOG5wFMygSwVicz51zm5iHEDAAhCToh9s790QW-N-7lLtO8qH1rXrWm7a3oXddlYWg-r4EzSuj9raGv72ptIR472taW2KWPvtOsHug1-1diW-o5ufTOsfVc2Ix9rGy_JWVU20V4dd0o-n58-5otk-f7yOn9cJpqlvE8EpqqqUCppVmAYZBYyzCUDo6y1iCrNEFSlcoNCZLmWqeaY6kxwMELplE_JzeF3dPne2dgXG78Lo0csmJQZiJxzNVL3B0oHH2OwVbENri3DUCAU-5DFPmRxDMn_AVtoZa0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Devloo, Philippe R. B.</creator><creator>Farias, Agnaldo M.</creator><creator>Gomes, Sônia M.</creator><creator>Pereira, Weslley</creator><creator>dos Santos, Antonio J. B.</creator><creator>Valentin, Frédéric</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0500-6044</orcidid></search><sort><creationdate>20210501</creationdate><title>New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes</title><author>Devloo, Philippe R. B. ; Farias, Agnaldo M. ; Gomes, Sônia M. ; Pereira, Weslley ; dos Santos, Antonio J. B. ; Valentin, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-4169ff1595db0d207e0718520d9eee11967109f98d14478c56c316c7430d49c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Divergence</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mixed methods research</topic><topic>Norms</topic><topic>Polygons</topic><topic>Polynomials</topic><topic>Rigid structures</topic><topic>Rotation</topic><topic>Stress distribution</topic><topic>Traction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devloo, Philippe R. B.</creatorcontrib><creatorcontrib>Farias, Agnaldo M.</creatorcontrib><creatorcontrib>Gomes, Sônia M.</creatorcontrib><creatorcontrib>Pereira, Weslley</creatorcontrib><creatorcontrib>dos Santos, Antonio J. B.</creatorcontrib><creatorcontrib>Valentin, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devloo, Philippe R. B.</au><au>Farias, Agnaldo M.</au><au>Gomes, Sônia M.</au><au>Pereira, Weslley</au><au>dos Santos, Antonio J. B.</au><au>Valentin, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>55</volume><issue>3</issue><spage>1005</spage><epage>1037</epage><pages>1005-1037</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced via the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the H ( div ) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the L 2 -norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2021013</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-0500-6044</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0764-583X
ispartof ESAIM. Mathematical modelling and numerical analysis, 2021-05, Vol.55 (3), p.1005-1037
issn 0764-583X
1290-3841
language eng
recordid cdi_proquest_journals_2557048339
source Alma/SFX Local Collection
subjects Approximation
Convergence
Divergence
Elasticity
Finite element method
Lagrange multiplier
Mathematical analysis
Mixed methods research
Norms
Polygons
Polynomials
Rigid structures
Rotation
Stress distribution
Traction
title New H (div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20H%20(div)-conforming%20multiscale%20hybrid-mixed%20methods%20for%20the%20elasticity%20problem%20on%20polygonal%20meshes&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Devloo,%20Philippe%20R.%20B.&rft.date=2021-05-01&rft.volume=55&rft.issue=3&rft.spage=1005&rft.epage=1037&rft.pages=1005-1037&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2021013&rft_dat=%3Cproquest_cross%3E2557048339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557048339&rft_id=info:pmid/&rfr_iscdi=true