Numerical solution of a logistic growth model for a population with Allee effect considering fuzzy initial values and fuzzy parameters

Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2018-03, Vol.332 (1), p.12051
Hauptverfasser: Amarti, Z, Nurkholipah, N S, Anggriani, N, Supriatna, A K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The model usually takes form in a differential equation or a system of differential equations, depending on the complexity of the underlying properties of the population. The most widely used growth models currently are those having a sigmoid solution of time series, including the Verhulst logistic equation and the Gompertz equation. In this paper we consider the Allee effect of the Verhulst's logistic population model. The Allee effect is a phenomenon in biology showing a high correlation between population size or density and the mean individual fitness of the population. The method used to derive the solution is the Runge-Kutta numerical scheme, since it is in general regarded as one among the good numerical scheme which is relatively easy to implement. Further exploration is done via the fuzzy theoretical approach to accommodate the impreciseness of the initial values and parameters in the model.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/332/1/012051