Electrostatic Fields in Some Special Inhomogeneous Media and New Generalizations of the Cauchy–Riemann System

This paper extends approach of our recent paper together with Kähler to building special classes of exact solutions of the static Maxwell system in inhomogeneous isotropic media by means of different generalizations of the Cauchy–Riemann system with variable coefficients. A new class of three-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2021-09, Vol.31 (4), Article 61
1. Verfasser: Bryukhov, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Advances in applied Clifford algebras
container_volume 31
creator Bryukhov, Dmitry
description This paper extends approach of our recent paper together with Kähler to building special classes of exact solutions of the static Maxwell system in inhomogeneous isotropic media by means of different generalizations of the Cauchy–Riemann system with variable coefficients. A new class of three-dimensional solutions of the static Maxwell system in some special cylindrically layered media is obtained using class of exact solutions of the elliptic Euler–Poisson–Darboux equation in cylindrical coordinates. The principal invariants of the electric field gradient tensor within a wide range of meridional fields are described using a family of Vekua type systems in cylindrical coordinates. Analytic models of meridional electrostatic fields in accordance with different generalizations of the Cauchy–Riemann system with variable coefficients allow us to introduce the concept of α -meridional mappings of the first and second kind depending on the values of a real parameter α . In particular, in case α = 0 , geometric properties of harmonic meridional mappings of the second kind are demonstrated explicitly within meridional fields in homogeneous media.
doi_str_mv 10.1007/s00006-021-01163-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556868458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556868458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4fec2d49fbecfc2242870773e77f7339f47630e8f84d16207903ead4211842e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgevTk0iSzlGKrUBWs-xAzJ3ZkZlInU6SufAff0CcxWsGdZ3Pg8P_fgY-QEwZnDECfJ8ijCuCsAMaUKPgOGTGlWCFLKHfJCJgxhQYo98lBSs8AUglhRiReNuiHPqbBDbWn0xqbKtG6o4vYIl2s0NeuodfdMrbxCTuM60RvsKoddV1Fb_GVzvK1d039lgGxSzQGOiyRTtzaLzef7x_3Nbauy8BNGrA9InvBNQmPf_cheZhePkyuivnd7HpyMS88BxgKGdDzSpbhEX3wnEtuNGgtUOughSiD1EoAmmBkxRQHXYJAV0nOmJEcxSE53WJXfXxZYxrsc1z3Xf5o-XisjDJybHKKb1M-C0g9Brvq69b1G8vAfnu1W682e7U_Xi3PJbEtpRzunrD_Q__T-gK-vnvz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556868458</pqid></control><display><type>article</type><title>Electrostatic Fields in Some Special Inhomogeneous Media and New Generalizations of the Cauchy–Riemann System</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bryukhov, Dmitry</creator><creatorcontrib>Bryukhov, Dmitry</creatorcontrib><description>This paper extends approach of our recent paper together with Kähler to building special classes of exact solutions of the static Maxwell system in inhomogeneous isotropic media by means of different generalizations of the Cauchy–Riemann system with variable coefficients. A new class of three-dimensional solutions of the static Maxwell system in some special cylindrically layered media is obtained using class of exact solutions of the elliptic Euler–Poisson–Darboux equation in cylindrical coordinates. The principal invariants of the electric field gradient tensor within a wide range of meridional fields are described using a family of Vekua type systems in cylindrical coordinates. Analytic models of meridional electrostatic fields in accordance with different generalizations of the Cauchy–Riemann system with variable coefficients allow us to introduce the concept of α -meridional mappings of the first and second kind depending on the values of a real parameter α . In particular, in case α = 0 , geometric properties of harmonic meridional mappings of the second kind are demonstrated explicitly within meridional fields in homogeneous media.</description><identifier>ISSN: 0188-7009</identifier><identifier>EISSN: 1661-4909</identifier><identifier>DOI: 10.1007/s00006-021-01163-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>2020 ; Applications of Mathematics ; August 3-7 ; Cylindrical coordinates ; Electric fields ; Exact solutions ; Hefei ; Inhomogeneous media ; Isotropic media ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; T.C. ICCA 12 ; Tensors ; Theoretical</subject><ispartof>Advances in applied Clifford algebras, 2021-09, Vol.31 (4), Article 61</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4fec2d49fbecfc2242870773e77f7339f47630e8f84d16207903ead4211842e3</cites><orcidid>0000-0002-8977-3282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00006-021-01163-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00006-021-01163-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bryukhov, Dmitry</creatorcontrib><title>Electrostatic Fields in Some Special Inhomogeneous Media and New Generalizations of the Cauchy–Riemann System</title><title>Advances in applied Clifford algebras</title><addtitle>Adv. Appl. Clifford Algebras</addtitle><description>This paper extends approach of our recent paper together with Kähler to building special classes of exact solutions of the static Maxwell system in inhomogeneous isotropic media by means of different generalizations of the Cauchy–Riemann system with variable coefficients. A new class of three-dimensional solutions of the static Maxwell system in some special cylindrically layered media is obtained using class of exact solutions of the elliptic Euler–Poisson–Darboux equation in cylindrical coordinates. The principal invariants of the electric field gradient tensor within a wide range of meridional fields are described using a family of Vekua type systems in cylindrical coordinates. Analytic models of meridional electrostatic fields in accordance with different generalizations of the Cauchy–Riemann system with variable coefficients allow us to introduce the concept of α -meridional mappings of the first and second kind depending on the values of a real parameter α . In particular, in case α = 0 , geometric properties of harmonic meridional mappings of the second kind are demonstrated explicitly within meridional fields in homogeneous media.</description><subject>2020</subject><subject>Applications of Mathematics</subject><subject>August 3-7</subject><subject>Cylindrical coordinates</subject><subject>Electric fields</subject><subject>Exact solutions</subject><subject>Hefei</subject><subject>Inhomogeneous media</subject><subject>Isotropic media</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>T.C. ICCA 12</subject><subject>Tensors</subject><subject>Theoretical</subject><issn>0188-7009</issn><issn>1661-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CrgevTk0iSzlGKrUBWs-xAzJ3ZkZlInU6SufAff0CcxWsGdZ3Pg8P_fgY-QEwZnDECfJ8ijCuCsAMaUKPgOGTGlWCFLKHfJCJgxhQYo98lBSs8AUglhRiReNuiHPqbBDbWn0xqbKtG6o4vYIl2s0NeuodfdMrbxCTuM60RvsKoddV1Fb_GVzvK1d039lgGxSzQGOiyRTtzaLzef7x_3Nbauy8BNGrA9InvBNQmPf_cheZhePkyuivnd7HpyMS88BxgKGdDzSpbhEX3wnEtuNGgtUOughSiD1EoAmmBkxRQHXYJAV0nOmJEcxSE53WJXfXxZYxrsc1z3Xf5o-XisjDJybHKKb1M-C0g9Brvq69b1G8vAfnu1W682e7U_Xi3PJbEtpRzunrD_Q__T-gK-vnvz</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Bryukhov, Dmitry</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8977-3282</orcidid></search><sort><creationdate>20210901</creationdate><title>Electrostatic Fields in Some Special Inhomogeneous Media and New Generalizations of the Cauchy–Riemann System</title><author>Bryukhov, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4fec2d49fbecfc2242870773e77f7339f47630e8f84d16207903ead4211842e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2020</topic><topic>Applications of Mathematics</topic><topic>August 3-7</topic><topic>Cylindrical coordinates</topic><topic>Electric fields</topic><topic>Exact solutions</topic><topic>Hefei</topic><topic>Inhomogeneous media</topic><topic>Isotropic media</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>T.C. ICCA 12</topic><topic>Tensors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryukhov, Dmitry</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied Clifford algebras</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryukhov, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Fields in Some Special Inhomogeneous Media and New Generalizations of the Cauchy–Riemann System</atitle><jtitle>Advances in applied Clifford algebras</jtitle><stitle>Adv. Appl. Clifford Algebras</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><artnum>61</artnum><issn>0188-7009</issn><eissn>1661-4909</eissn><abstract>This paper extends approach of our recent paper together with Kähler to building special classes of exact solutions of the static Maxwell system in inhomogeneous isotropic media by means of different generalizations of the Cauchy–Riemann system with variable coefficients. A new class of three-dimensional solutions of the static Maxwell system in some special cylindrically layered media is obtained using class of exact solutions of the elliptic Euler–Poisson–Darboux equation in cylindrical coordinates. The principal invariants of the electric field gradient tensor within a wide range of meridional fields are described using a family of Vekua type systems in cylindrical coordinates. Analytic models of meridional electrostatic fields in accordance with different generalizations of the Cauchy–Riemann system with variable coefficients allow us to introduce the concept of α -meridional mappings of the first and second kind depending on the values of a real parameter α . In particular, in case α = 0 , geometric properties of harmonic meridional mappings of the second kind are demonstrated explicitly within meridional fields in homogeneous media.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00006-021-01163-2</doi><orcidid>https://orcid.org/0000-0002-8977-3282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0188-7009
ispartof Advances in applied Clifford algebras, 2021-09, Vol.31 (4), Article 61
issn 0188-7009
1661-4909
language eng
recordid cdi_proquest_journals_2556868458
source SpringerLink Journals - AutoHoldings
subjects 2020
Applications of Mathematics
August 3-7
Cylindrical coordinates
Electric fields
Exact solutions
Hefei
Inhomogeneous media
Isotropic media
Mathematical and Computational Physics
Mathematical Methods in Physics
Physics
Physics and Astronomy
T.C. ICCA 12
Tensors
Theoretical
title Electrostatic Fields in Some Special Inhomogeneous Media and New Generalizations of the Cauchy–Riemann System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Fields%20in%20Some%20Special%20Inhomogeneous%20Media%20and%20New%20Generalizations%20of%20the%20Cauchy%E2%80%93Riemann%20System&rft.jtitle=Advances%20in%20applied%20Clifford%20algebras&rft.au=Bryukhov,%20Dmitry&rft.date=2021-09-01&rft.volume=31&rft.issue=4&rft.artnum=61&rft.issn=0188-7009&rft.eissn=1661-4909&rft_id=info:doi/10.1007/s00006-021-01163-2&rft_dat=%3Cproquest_cross%3E2556868458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556868458&rft_id=info:pmid/&rfr_iscdi=true