An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost

This research deals with a single machine batch scheduling model considering the influenced of learning, forgetting, and machine deterioration effects. The objective of the model is to minimize total inventory holding cost, and the decision variables are the number of batches (N), batch sizes (Q[i],...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2018-03, Vol.319 (1), p.12038
Hauptverfasser: Yusriski, R, Sukoyo, Samadhi, T M A A, Halim, A H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12038
container_title IOP conference series. Materials Science and Engineering
container_volume 319
creator Yusriski, R
Sukoyo
Samadhi, T M A A
Halim, A H
description This research deals with a single machine batch scheduling model considering the influenced of learning, forgetting, and machine deterioration effects. The objective of the model is to minimize total inventory holding cost, and the decision variables are the number of batches (N), batch sizes (Q[i], i = 1, 2, .., N) and the sequence of processing the resulting batches. The parts to be processed are received at the right time and the right quantities, and all completed parts must be delivered at a common due date. We propose a heuristic procedure based on the Lagrange method to solve the problem. The effectiveness of the procedure is evaluated by comparing the resulting solution to the optimal solution obtained from the enumeration procedure using the integer composition technique and shows that the average effectiveness is 94%.
doi_str_mv 10.1088/1757-899X/319/1/012038
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2556829756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556829756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-ea6ad923a3739f17dfd44d938c3d823b8ed232a63e59d267b863117e4cb27e3b3</originalsourceid><addsrcrecordid>eNqFkd1qGzEQhZfQQNykr1AEuclFXetnV9JehpD-gEsukkDuhFaatWV2JUeSA-mr9GWrrYNDoJCrOYy-OSPmVNVngr8SLOWCiEbMZds-LBhpF2SBCcVMHlWzw8OHg5bkpPqY0gZjLuoaz6o_lx45n2EFEXU6mzVKZg12Nzi_QmOwMCATfHIW4tQZQEdfxBfUh7iCnP9p7S2ykAsSos4ueAR9DyaniUIapUINgEZt1s4DygGNzrvR_Z501kP5wRP4HOIzWofBTotMSPmsOu71kODTSz2t7r9d3139mC9vvv-8ulzOTc1xnoPm2raUaSZY2xNhe1vXtmXSMCsp6yRYyqjmDJrWUi46yRkhAmrTUQGsY6fV-d53G8PjDlJWm7CLvqxUtGm4pK1oeKH4njIxpBShV9voRh2fFcFqCkJNN1bTvVUJQhG1D6IMXuwHXdi-Ov-6vX6Dqa3tC0r_g77j_xduYpuR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556829756</pqid></control><display><type>article</type><title>An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Yusriski, R ; Sukoyo ; Samadhi, T M A A ; Halim, A H</creator><creatorcontrib>Yusriski, R ; Sukoyo ; Samadhi, T M A A ; Halim, A H</creatorcontrib><description>This research deals with a single machine batch scheduling model considering the influenced of learning, forgetting, and machine deterioration effects. The objective of the model is to minimize total inventory holding cost, and the decision variables are the number of batches (N), batch sizes (Q[i], i = 1, 2, .., N) and the sequence of processing the resulting batches. The parts to be processed are received at the right time and the right quantities, and all completed parts must be delivered at a common due date. We propose a heuristic procedure based on the Lagrange method to solve the problem. The effectiveness of the procedure is evaluated by comparing the resulting solution to the optimal solution obtained from the enumeration procedure using the integer composition technique and shows that the average effectiveness is 94%.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/319/1/012038</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Deterioration ; Enumeration ; Integers ; Learning ; Scheduling</subject><ispartof>IOP conference series. Materials Science and Engineering, 2018-03, Vol.319 (1), p.12038</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-ea6ad923a3739f17dfd44d938c3d823b8ed232a63e59d267b863117e4cb27e3b3</citedby><cites>FETCH-LOGICAL-c460t-ea6ad923a3739f17dfd44d938c3d823b8ed232a63e59d267b863117e4cb27e3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/319/1/012038/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Yusriski, R</creatorcontrib><creatorcontrib>Sukoyo</creatorcontrib><creatorcontrib>Samadhi, T M A A</creatorcontrib><creatorcontrib>Halim, A H</creatorcontrib><title>An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>This research deals with a single machine batch scheduling model considering the influenced of learning, forgetting, and machine deterioration effects. The objective of the model is to minimize total inventory holding cost, and the decision variables are the number of batches (N), batch sizes (Q[i], i = 1, 2, .., N) and the sequence of processing the resulting batches. The parts to be processed are received at the right time and the right quantities, and all completed parts must be delivered at a common due date. We propose a heuristic procedure based on the Lagrange method to solve the problem. The effectiveness of the procedure is evaluated by comparing the resulting solution to the optimal solution obtained from the enumeration procedure using the integer composition technique and shows that the average effectiveness is 94%.</description><subject>Deterioration</subject><subject>Enumeration</subject><subject>Integers</subject><subject>Learning</subject><subject>Scheduling</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkd1qGzEQhZfQQNykr1AEuclFXetnV9JehpD-gEsukkDuhFaatWV2JUeSA-mr9GWrrYNDoJCrOYy-OSPmVNVngr8SLOWCiEbMZds-LBhpF2SBCcVMHlWzw8OHg5bkpPqY0gZjLuoaz6o_lx45n2EFEXU6mzVKZg12Nzi_QmOwMCATfHIW4tQZQEdfxBfUh7iCnP9p7S2ykAsSos4ueAR9DyaniUIapUINgEZt1s4DygGNzrvR_Z501kP5wRP4HOIzWofBTotMSPmsOu71kODTSz2t7r9d3139mC9vvv-8ulzOTc1xnoPm2raUaSZY2xNhe1vXtmXSMCsp6yRYyqjmDJrWUi46yRkhAmrTUQGsY6fV-d53G8PjDlJWm7CLvqxUtGm4pK1oeKH4njIxpBShV9voRh2fFcFqCkJNN1bTvVUJQhG1D6IMXuwHXdi-Ov-6vX6Dqa3tC0r_g77j_xduYpuR</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Yusriski, R</creator><creator>Sukoyo</creator><creator>Samadhi, T M A A</creator><creator>Halim, A H</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost</title><author>Yusriski, R ; Sukoyo ; Samadhi, T M A A ; Halim, A H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-ea6ad923a3739f17dfd44d938c3d823b8ed232a63e59d267b863117e4cb27e3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deterioration</topic><topic>Enumeration</topic><topic>Integers</topic><topic>Learning</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yusriski, R</creatorcontrib><creatorcontrib>Sukoyo</creatorcontrib><creatorcontrib>Samadhi, T M A A</creatorcontrib><creatorcontrib>Halim, A H</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yusriski, R</au><au>Sukoyo</au><au>Samadhi, T M A A</au><au>Halim, A H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>319</volume><issue>1</issue><spage>12038</spage><pages>12038-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>This research deals with a single machine batch scheduling model considering the influenced of learning, forgetting, and machine deterioration effects. The objective of the model is to minimize total inventory holding cost, and the decision variables are the number of batches (N), batch sizes (Q[i], i = 1, 2, .., N) and the sequence of processing the resulting batches. The parts to be processed are received at the right time and the right quantities, and all completed parts must be delivered at a common due date. We propose a heuristic procedure based on the Lagrange method to solve the problem. The effectiveness of the procedure is evaluated by comparing the resulting solution to the optimal solution obtained from the enumeration procedure using the integer composition technique and shows that the average effectiveness is 94%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/319/1/012038</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2018-03, Vol.319 (1), p.12038
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2556829756
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Deterioration
Enumeration
Integers
Learning
Scheduling
title An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integer%20batch%20scheduling%20model%20considering%20learning,%20forgetting,%20and%20deterioration%20effects%20for%20a%20single%20machine%20to%20minimize%20total%20inventory%20holding%20cost&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Yusriski,%20R&rft.date=2018-03-01&rft.volume=319&rft.issue=1&rft.spage=12038&rft.pages=12038-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/319/1/012038&rft_dat=%3Cproquest_iop_j%3E2556829756%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556829756&rft_id=info:pmid/&rfr_iscdi=true