In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis
Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO 3 , CaO, Na 2 CO 3 , and NaOH, were used for in...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2021-08, Vol.193 (8), p.2602-2615 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2615 |
---|---|
container_issue | 8 |
container_start_page | 2602 |
container_title | Applied biochemistry and biotechnology |
container_volume | 193 |
creator | Guo, Jianming Zhao, Jianglin Nawaz, Ali Haq, Ikram ul Chang, Wenhuan Xu, Yong |
description | Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO
3
, CaO, Na
2
CO
3
, and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO
3
, CaO, Na
2
CO
3
, and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na
2
CO
3
was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid. |
doi_str_mv | 10.1007/s12010-021-03550-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556550054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556550054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-143d9fce8593d7c76c0cfef400e92ee51ffb3c2d2815a33e74e7a1f9c282536c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWqt_wIUEXI--JJNmZin1q1CooIK7kGZeanQ6qcnMov_eqa26c_Xgcu95cAg5Y3DJANRVYhwYZMBZBkJKyIo9MmBSln1Usn0yAK5ExnlRHpHjlN4BGC-kOiRHQqhSAZcD4icNffJtR8dvuPTW1HQa7IdvFjQ4em2xNS0metPFTfS6rkM2q_0iJGPtm4m-QvoYcWWiaX1o6HxNp37RBIt13dUhYY_wVajXyacTcuBMnfB0d4fk5e72efyQTWf3k_H1NLMi523GclGVzmIhS1Epq0YWrEOXA2DJESVzbi4sr3jBpBECVY7KMFdaXnApRlYMycWWu4rhs8PU6vfQxaZ_qbmUo94TyLxv8W3LxpBSRKdX0S9NXGsGemNXb-3q3q7-tquLfnS-Q3fzJVa_kx-dfUFsC2m1EYbx7_c_2C8lXYXW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556550054</pqid></control><display><type>article</type><title>In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Jianming ; Zhao, Jianglin ; Nawaz, Ali ; Haq, Ikram ul ; Chang, Wenhuan ; Xu, Yong</creator><creatorcontrib>Guo, Jianming ; Zhao, Jianglin ; Nawaz, Ali ; Haq, Ikram ul ; Chang, Wenhuan ; Xu, Yong</creatorcontrib><description>Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO
3
, CaO, Na
2
CO
3
, and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO
3
, CaO, Na
2
CO
3
, and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na
2
CO
3
was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-021-03550-8</identifier><identifier>PMID: 33797025</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetates ; Acetic acid ; Acids ; Biochemistry ; Biotechnology ; Calcium carbonate ; Chemistry ; Chemistry and Materials Science ; Drying ; Evaporation ; Hydrolysates ; Industrial production ; Lignocellulose ; Locking ; Neutralizers ; Oligosaccharides ; Original Article ; Sodium carbonate ; Sodium hydroxide ; Spray drying ; Vacuum evaporation</subject><ispartof>Applied biochemistry and biotechnology, 2021-08, Vol.193 (8), p.2602-2615</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-143d9fce8593d7c76c0cfef400e92ee51ffb3c2d2815a33e74e7a1f9c282536c3</citedby><cites>FETCH-LOGICAL-c342t-143d9fce8593d7c76c0cfef400e92ee51ffb3c2d2815a33e74e7a1f9c282536c3</cites><orcidid>0000-0002-8106-326X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-021-03550-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-021-03550-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33797025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jianming</creatorcontrib><creatorcontrib>Zhao, Jianglin</creatorcontrib><creatorcontrib>Nawaz, Ali</creatorcontrib><creatorcontrib>Haq, Ikram ul</creatorcontrib><creatorcontrib>Chang, Wenhuan</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><title>In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO
3
, CaO, Na
2
CO
3
, and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO
3
, CaO, Na
2
CO
3
, and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na
2
CO
3
was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Acids</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Calcium carbonate</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Drying</subject><subject>Evaporation</subject><subject>Hydrolysates</subject><subject>Industrial production</subject><subject>Lignocellulose</subject><subject>Locking</subject><subject>Neutralizers</subject><subject>Oligosaccharides</subject><subject>Original Article</subject><subject>Sodium carbonate</subject><subject>Sodium hydroxide</subject><subject>Spray drying</subject><subject>Vacuum evaporation</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURYMoWqt_wIUEXI--JJNmZin1q1CooIK7kGZeanQ6qcnMov_eqa26c_Xgcu95cAg5Y3DJANRVYhwYZMBZBkJKyIo9MmBSln1Usn0yAK5ExnlRHpHjlN4BGC-kOiRHQqhSAZcD4icNffJtR8dvuPTW1HQa7IdvFjQ4em2xNS0metPFTfS6rkM2q_0iJGPtm4m-QvoYcWWiaX1o6HxNp37RBIt13dUhYY_wVajXyacTcuBMnfB0d4fk5e72efyQTWf3k_H1NLMi523GclGVzmIhS1Epq0YWrEOXA2DJESVzbi4sr3jBpBECVY7KMFdaXnApRlYMycWWu4rhs8PU6vfQxaZ_qbmUo94TyLxv8W3LxpBSRKdX0S9NXGsGemNXb-3q3q7-tquLfnS-Q3fzJVa_kx-dfUFsC2m1EYbx7_c_2C8lXYXW</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Guo, Jianming</creator><creator>Zhao, Jianglin</creator><creator>Nawaz, Ali</creator><creator>Haq, Ikram ul</creator><creator>Chang, Wenhuan</creator><creator>Xu, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8106-326X</orcidid></search><sort><creationdate>20210801</creationdate><title>In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis</title><author>Guo, Jianming ; Zhao, Jianglin ; Nawaz, Ali ; Haq, Ikram ul ; Chang, Wenhuan ; Xu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-143d9fce8593d7c76c0cfef400e92ee51ffb3c2d2815a33e74e7a1f9c282536c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Acids</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Calcium carbonate</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Drying</topic><topic>Evaporation</topic><topic>Hydrolysates</topic><topic>Industrial production</topic><topic>Lignocellulose</topic><topic>Locking</topic><topic>Neutralizers</topic><topic>Oligosaccharides</topic><topic>Original Article</topic><topic>Sodium carbonate</topic><topic>Sodium hydroxide</topic><topic>Spray drying</topic><topic>Vacuum evaporation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jianming</creatorcontrib><creatorcontrib>Zhao, Jianglin</creatorcontrib><creatorcontrib>Nawaz, Ali</creatorcontrib><creatorcontrib>Haq, Ikram ul</creatorcontrib><creatorcontrib>Chang, Wenhuan</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jianming</au><au>Zhao, Jianglin</au><au>Nawaz, Ali</au><au>Haq, Ikram ul</au><au>Chang, Wenhuan</au><au>Xu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>193</volume><issue>8</issue><spage>2602</spage><epage>2615</epage><pages>2602-2615</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO
3
, CaO, Na
2
CO
3
, and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO
3
, CaO, Na
2
CO
3
, and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na
2
CO
3
was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33797025</pmid><doi>10.1007/s12010-021-03550-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8106-326X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2021-08, Vol.193 (8), p.2602-2615 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_journals_2556550054 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acetates Acetic acid Acids Biochemistry Biotechnology Calcium carbonate Chemistry Chemistry and Materials Science Drying Evaporation Hydrolysates Industrial production Lignocellulose Locking Neutralizers Oligosaccharides Original Article Sodium carbonate Sodium hydroxide Spray drying Vacuum evaporation |
title | In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Chemical%20Locking%20of%20Acetates%20During%20Xylo-Oligosaccharide%20Preparation%20by%20Lignocellulose%20Acidolysis&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Guo,%20Jianming&rft.date=2021-08-01&rft.volume=193&rft.issue=8&rft.spage=2602&rft.epage=2615&rft.pages=2602-2615&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-021-03550-8&rft_dat=%3Cproquest_cross%3E2556550054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556550054&rft_id=info:pmid/33797025&rfr_iscdi=true |