In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis

Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO 3 , CaO, Na 2 CO 3 , and NaOH, were used for in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2021-08, Vol.193 (8), p.2602-2615
Hauptverfasser: Guo, Jianming, Zhao, Jianglin, Nawaz, Ali, Haq, Ikram ul, Chang, Wenhuan, Xu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2615
container_issue 8
container_start_page 2602
container_title Applied biochemistry and biotechnology
container_volume 193
creator Guo, Jianming
Zhao, Jianglin
Nawaz, Ali
Haq, Ikram ul
Chang, Wenhuan
Xu, Yong
description Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO 3 , CaO, Na 2 CO 3 , and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO 3 , CaO, Na 2 CO 3 , and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na 2 CO 3 was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.
doi_str_mv 10.1007/s12010-021-03550-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556550054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556550054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-143d9fce8593d7c76c0cfef400e92ee51ffb3c2d2815a33e74e7a1f9c282536c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWqt_wIUEXI--JJNmZin1q1CooIK7kGZeanQ6qcnMov_eqa26c_Xgcu95cAg5Y3DJANRVYhwYZMBZBkJKyIo9MmBSln1Usn0yAK5ExnlRHpHjlN4BGC-kOiRHQqhSAZcD4icNffJtR8dvuPTW1HQa7IdvFjQ4em2xNS0metPFTfS6rkM2q_0iJGPtm4m-QvoYcWWiaX1o6HxNp37RBIt13dUhYY_wVajXyacTcuBMnfB0d4fk5e72efyQTWf3k_H1NLMi523GclGVzmIhS1Epq0YWrEOXA2DJESVzbi4sr3jBpBECVY7KMFdaXnApRlYMycWWu4rhs8PU6vfQxaZ_qbmUo94TyLxv8W3LxpBSRKdX0S9NXGsGemNXb-3q3q7-tquLfnS-Q3fzJVa_kx-dfUFsC2m1EYbx7_c_2C8lXYXW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556550054</pqid></control><display><type>article</type><title>In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Jianming ; Zhao, Jianglin ; Nawaz, Ali ; Haq, Ikram ul ; Chang, Wenhuan ; Xu, Yong</creator><creatorcontrib>Guo, Jianming ; Zhao, Jianglin ; Nawaz, Ali ; Haq, Ikram ul ; Chang, Wenhuan ; Xu, Yong</creatorcontrib><description>Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO 3 , CaO, Na 2 CO 3 , and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO 3 , CaO, Na 2 CO 3 , and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na 2 CO 3 was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-021-03550-8</identifier><identifier>PMID: 33797025</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetates ; Acetic acid ; Acids ; Biochemistry ; Biotechnology ; Calcium carbonate ; Chemistry ; Chemistry and Materials Science ; Drying ; Evaporation ; Hydrolysates ; Industrial production ; Lignocellulose ; Locking ; Neutralizers ; Oligosaccharides ; Original Article ; Sodium carbonate ; Sodium hydroxide ; Spray drying ; Vacuum evaporation</subject><ispartof>Applied biochemistry and biotechnology, 2021-08, Vol.193 (8), p.2602-2615</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-143d9fce8593d7c76c0cfef400e92ee51ffb3c2d2815a33e74e7a1f9c282536c3</citedby><cites>FETCH-LOGICAL-c342t-143d9fce8593d7c76c0cfef400e92ee51ffb3c2d2815a33e74e7a1f9c282536c3</cites><orcidid>0000-0002-8106-326X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-021-03550-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-021-03550-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33797025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jianming</creatorcontrib><creatorcontrib>Zhao, Jianglin</creatorcontrib><creatorcontrib>Nawaz, Ali</creatorcontrib><creatorcontrib>Haq, Ikram ul</creatorcontrib><creatorcontrib>Chang, Wenhuan</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><title>In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO 3 , CaO, Na 2 CO 3 , and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO 3 , CaO, Na 2 CO 3 , and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na 2 CO 3 was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Acids</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Calcium carbonate</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Drying</subject><subject>Evaporation</subject><subject>Hydrolysates</subject><subject>Industrial production</subject><subject>Lignocellulose</subject><subject>Locking</subject><subject>Neutralizers</subject><subject>Oligosaccharides</subject><subject>Original Article</subject><subject>Sodium carbonate</subject><subject>Sodium hydroxide</subject><subject>Spray drying</subject><subject>Vacuum evaporation</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURYMoWqt_wIUEXI--JJNmZin1q1CooIK7kGZeanQ6qcnMov_eqa26c_Xgcu95cAg5Y3DJANRVYhwYZMBZBkJKyIo9MmBSln1Usn0yAK5ExnlRHpHjlN4BGC-kOiRHQqhSAZcD4icNffJtR8dvuPTW1HQa7IdvFjQ4em2xNS0metPFTfS6rkM2q_0iJGPtm4m-QvoYcWWiaX1o6HxNp37RBIt13dUhYY_wVajXyacTcuBMnfB0d4fk5e72efyQTWf3k_H1NLMi523GclGVzmIhS1Epq0YWrEOXA2DJESVzbi4sr3jBpBECVY7KMFdaXnApRlYMycWWu4rhs8PU6vfQxaZ_qbmUo94TyLxv8W3LxpBSRKdX0S9NXGsGemNXb-3q3q7-tquLfnS-Q3fzJVa_kx-dfUFsC2m1EYbx7_c_2C8lXYXW</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Guo, Jianming</creator><creator>Zhao, Jianglin</creator><creator>Nawaz, Ali</creator><creator>Haq, Ikram ul</creator><creator>Chang, Wenhuan</creator><creator>Xu, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8106-326X</orcidid></search><sort><creationdate>20210801</creationdate><title>In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis</title><author>Guo, Jianming ; Zhao, Jianglin ; Nawaz, Ali ; Haq, Ikram ul ; Chang, Wenhuan ; Xu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-143d9fce8593d7c76c0cfef400e92ee51ffb3c2d2815a33e74e7a1f9c282536c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Acids</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Calcium carbonate</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Drying</topic><topic>Evaporation</topic><topic>Hydrolysates</topic><topic>Industrial production</topic><topic>Lignocellulose</topic><topic>Locking</topic><topic>Neutralizers</topic><topic>Oligosaccharides</topic><topic>Original Article</topic><topic>Sodium carbonate</topic><topic>Sodium hydroxide</topic><topic>Spray drying</topic><topic>Vacuum evaporation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jianming</creatorcontrib><creatorcontrib>Zhao, Jianglin</creatorcontrib><creatorcontrib>Nawaz, Ali</creatorcontrib><creatorcontrib>Haq, Ikram ul</creatorcontrib><creatorcontrib>Chang, Wenhuan</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jianming</au><au>Zhao, Jianglin</au><au>Nawaz, Ali</au><au>Haq, Ikram ul</au><au>Chang, Wenhuan</au><au>Xu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>193</volume><issue>8</issue><spage>2602</spage><epage>2615</epage><pages>2602-2615</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO 3 , CaO, Na 2 CO 3 , and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO 3 , CaO, Na 2 CO 3 , and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na 2 CO 3 was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33797025</pmid><doi>10.1007/s12010-021-03550-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8106-326X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0273-2289
ispartof Applied biochemistry and biotechnology, 2021-08, Vol.193 (8), p.2602-2615
issn 0273-2289
1559-0291
language eng
recordid cdi_proquest_journals_2556550054
source SpringerLink Journals - AutoHoldings
subjects Acetates
Acetic acid
Acids
Biochemistry
Biotechnology
Calcium carbonate
Chemistry
Chemistry and Materials Science
Drying
Evaporation
Hydrolysates
Industrial production
Lignocellulose
Locking
Neutralizers
Oligosaccharides
Original Article
Sodium carbonate
Sodium hydroxide
Spray drying
Vacuum evaporation
title In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Chemical%20Locking%20of%20Acetates%20During%20Xylo-Oligosaccharide%20Preparation%20by%20Lignocellulose%20Acidolysis&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Guo,%20Jianming&rft.date=2021-08-01&rft.volume=193&rft.issue=8&rft.spage=2602&rft.epage=2615&rft.pages=2602-2615&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-021-03550-8&rft_dat=%3Cproquest_cross%3E2556550054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556550054&rft_id=info:pmid/33797025&rfr_iscdi=true