Cyclic polyacetylene

Here we demonstrate the synthesis of cyclic polyacetylene (c-PA), or [∞]annulene, via homogeneous tungsten-catalysed polymerization of acetylene. Unique to the cyclic structure and evidence for its topology, the c-PA contains >99% trans double bonds, even when synthesized at −94 °C. High activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-08, Vol.13 (8), p.792-799
Hauptverfasser: Miao, Zhihui, Gonsales, Stella A., Ehm, Christian, Mentink-Vigier, Frederic, Bowers, Clifford R., Sumerlin, Brent S., Veige, Adam S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we demonstrate the synthesis of cyclic polyacetylene (c-PA), or [∞]annulene, via homogeneous tungsten-catalysed polymerization of acetylene. Unique to the cyclic structure and evidence for its topology, the c-PA contains >99% trans double bonds, even when synthesized at −94 °C. High activity with low catalyst loadings allows for the synthesis of temporarily soluble c-PA, thus opening the opportunity to derivatize the polymer in solution. Absolute evidence for the cyclic topology comes from atomic force microscopy images of bottlebrush derivatives generated from soluble c-PA. Now available in its cyclic form, initial characterization studies are presented to elucidate the topological differences compared with traditionally synthesized linear polyacetylene. One advantage to the synthesis of c-PA is the direct synthesis of the trans–transoid isomer. Low defect concentrations, low soliton concentration, and relatively high conjugation lengths are characteristics of c-PA. Efficient catalysis permits the rapid synthesis of lustrous flexible thin films of c - PA, and when doped with I 2 , they are highly conductive (398 (±76) Ω −1  cm −1 ). Lustrous flexible thin films of semiconducting cyclic polyacetylene (c-PA) have been synthesized and characterized. Rapid and efficient tungsten-catalysed acetylene polymerization conditions produce temporarily soluble c-PA, enabling the in situ derivatization of this typically insoluble polymer. Compelling evidence for the cyclic topology—and its influence on the physical properties of the polymer—are presented.
ISSN:1755-4330
1755-4349
DOI:10.1038/s41557-021-00713-2