Cognitive capabilities for the CAAI in cyber-physical production systems

This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-08, Vol.115 (11-12), p.3513-3532
Hauptverfasser: Strohschein, Jan, Fischbach, Andreas, Bunte, Andreas, Faeskorn-Woyke, Heide, Moriz, Natalia, Bartz-Beielstein, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3532
container_issue 11-12
container_start_page 3513
container_title International journal of advanced manufacturing technology
container_volume 115
creator Strohschein, Jan
Fischbach, Andreas
Bunte, Andreas
Faeskorn-Woyke, Heide
Moriz, Natalia
Bartz-Beielstein, Thomas
description This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case.
doi_str_mv 10.1007/s00170-021-07248-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556542186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556542186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-15f77df3b119140bd35b541ae403a8b97b7557b7bbd43f3b06d2f27de14f09283</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6sz-zc9lqC2UPCi5yWbbNqUNom7qZBv79oI3rzMMMPvvRkeIfcIjwhgniIAGmDAkYHhMmPigsxQCsEEoLokM-A6LY3OrslNjPuEa9TZjKzybts2Q_PlaVn0hWsOafCR1l2gw87TfLlc06al5eh8YP1ujE1ZHGgfuupUDk3X0jjGwR_jLbmqi0P0d799Tj5ent_zFdu8va7z5YaVQouBoaqNqWrhEBcowVVCOSWx8BJEkbmFcUapVJyrpEgY6IrX3FQeZQ0Lnok5eZh80wufJx8Hu-9OoU0nLVdKK8kx04niE1WGLsbga9uH5liE0SLYn8TslJhNidlzYlYkkZhEMcHt1oc_639U34dEbYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556542186</pqid></control><display><type>article</type><title>Cognitive capabilities for the CAAI in cyber-physical production systems</title><source>SpringerNature Journals</source><creator>Strohschein, Jan ; Fischbach, Andreas ; Bunte, Andreas ; Faeskorn-Woyke, Heide ; Moriz, Natalia ; Bartz-Beielstein, Thomas</creator><creatorcontrib>Strohschein, Jan ; Fischbach, Andreas ; Bunte, Andreas ; Faeskorn-Woyke, Heide ; Moriz, Natalia ; Bartz-Beielstein, Thomas</creatorcontrib><description>This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07248-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial intelligence ; CAE) and Design ; Computer-Aided Engineering (CAD ; Configurations ; Engineering ; Industrial and Production Engineering ; Knowledge bases (artificial intelligence) ; Mechanical Engineering ; Media Management ; Modules ; Original Article ; Performance evaluation ; Pipelines</subject><ispartof>International journal of advanced manufacturing technology, 2021-08, Vol.115 (11-12), p.3513-3532</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-15f77df3b119140bd35b541ae403a8b97b7557b7bbd43f3b06d2f27de14f09283</citedby><cites>FETCH-LOGICAL-c363t-15f77df3b119140bd35b541ae403a8b97b7557b7bbd43f3b06d2f27de14f09283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07248-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07248-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Strohschein, Jan</creatorcontrib><creatorcontrib>Fischbach, Andreas</creatorcontrib><creatorcontrib>Bunte, Andreas</creatorcontrib><creatorcontrib>Faeskorn-Woyke, Heide</creatorcontrib><creatorcontrib>Moriz, Natalia</creatorcontrib><creatorcontrib>Bartz-Beielstein, Thomas</creatorcontrib><title>Cognitive capabilities for the CAAI in cyber-physical production systems</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Configurations</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Modules</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Pipelines</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6sz-zc9lqC2UPCi5yWbbNqUNom7qZBv79oI3rzMMMPvvRkeIfcIjwhgniIAGmDAkYHhMmPigsxQCsEEoLokM-A6LY3OrslNjPuEa9TZjKzybts2Q_PlaVn0hWsOafCR1l2gw87TfLlc06al5eh8YP1ujE1ZHGgfuupUDk3X0jjGwR_jLbmqi0P0d799Tj5ent_zFdu8va7z5YaVQouBoaqNqWrhEBcowVVCOSWx8BJEkbmFcUapVJyrpEgY6IrX3FQeZQ0Lnok5eZh80wufJx8Hu-9OoU0nLVdKK8kx04niE1WGLsbga9uH5liE0SLYn8TslJhNidlzYlYkkZhEMcHt1oc_639U34dEbYw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Strohschein, Jan</creator><creator>Fischbach, Andreas</creator><creator>Bunte, Andreas</creator><creator>Faeskorn-Woyke, Heide</creator><creator>Moriz, Natalia</creator><creator>Bartz-Beielstein, Thomas</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210801</creationdate><title>Cognitive capabilities for the CAAI in cyber-physical production systems</title><author>Strohschein, Jan ; Fischbach, Andreas ; Bunte, Andreas ; Faeskorn-Woyke, Heide ; Moriz, Natalia ; Bartz-Beielstein, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-15f77df3b119140bd35b541ae403a8b97b7557b7bbd43f3b06d2f27de14f09283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Configurations</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Modules</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Pipelines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strohschein, Jan</creatorcontrib><creatorcontrib>Fischbach, Andreas</creatorcontrib><creatorcontrib>Bunte, Andreas</creatorcontrib><creatorcontrib>Faeskorn-Woyke, Heide</creatorcontrib><creatorcontrib>Moriz, Natalia</creatorcontrib><creatorcontrib>Bartz-Beielstein, Thomas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strohschein, Jan</au><au>Fischbach, Andreas</au><au>Bunte, Andreas</au><au>Faeskorn-Woyke, Heide</au><au>Moriz, Natalia</au><au>Bartz-Beielstein, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cognitive capabilities for the CAAI in cyber-physical production systems</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>115</volume><issue>11-12</issue><spage>3513</spage><epage>3532</epage><pages>3513-3532</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07248-3</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021-08, Vol.115 (11-12), p.3513-3532
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2556542186
source SpringerNature Journals
subjects Algorithms
Artificial intelligence
CAE) and Design
Computer-Aided Engineering (CAD
Configurations
Engineering
Industrial and Production Engineering
Knowledge bases (artificial intelligence)
Mechanical Engineering
Media Management
Modules
Original Article
Performance evaluation
Pipelines
title Cognitive capabilities for the CAAI in cyber-physical production systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cognitive%20capabilities%20for%20the%20CAAI%20in%20cyber-physical%20production%20systems&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Strohschein,%20Jan&rft.date=2021-08-01&rft.volume=115&rft.issue=11-12&rft.spage=3513&rft.epage=3532&rft.pages=3513-3532&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07248-3&rft_dat=%3Cproquest_cross%3E2556542186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556542186&rft_id=info:pmid/&rfr_iscdi=true