Cognitive capabilities for the CAAI in cyber-physical production systems
This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and t...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021-08, Vol.115 (11-12), p.3513-3532 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3532 |
---|---|
container_issue | 11-12 |
container_start_page | 3513 |
container_title | International journal of advanced manufacturing technology |
container_volume | 115 |
creator | Strohschein, Jan Fischbach, Andreas Bunte, Andreas Faeskorn-Woyke, Heide Moriz, Natalia Bartz-Beielstein, Thomas |
description | This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case. |
doi_str_mv | 10.1007/s00170-021-07248-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556542186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556542186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-15f77df3b119140bd35b541ae403a8b97b7557b7bbd43f3b06d2f27de14f09283</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6sz-zc9lqC2UPCi5yWbbNqUNom7qZBv79oI3rzMMMPvvRkeIfcIjwhgniIAGmDAkYHhMmPigsxQCsEEoLokM-A6LY3OrslNjPuEa9TZjKzybts2Q_PlaVn0hWsOafCR1l2gw87TfLlc06al5eh8YP1ujE1ZHGgfuupUDk3X0jjGwR_jLbmqi0P0d799Tj5ent_zFdu8va7z5YaVQouBoaqNqWrhEBcowVVCOSWx8BJEkbmFcUapVJyrpEgY6IrX3FQeZQ0Lnok5eZh80wufJx8Hu-9OoU0nLVdKK8kx04niE1WGLsbga9uH5liE0SLYn8TslJhNidlzYlYkkZhEMcHt1oc_639U34dEbYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556542186</pqid></control><display><type>article</type><title>Cognitive capabilities for the CAAI in cyber-physical production systems</title><source>SpringerNature Journals</source><creator>Strohschein, Jan ; Fischbach, Andreas ; Bunte, Andreas ; Faeskorn-Woyke, Heide ; Moriz, Natalia ; Bartz-Beielstein, Thomas</creator><creatorcontrib>Strohschein, Jan ; Fischbach, Andreas ; Bunte, Andreas ; Faeskorn-Woyke, Heide ; Moriz, Natalia ; Bartz-Beielstein, Thomas</creatorcontrib><description>This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07248-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial intelligence ; CAE) and Design ; Computer-Aided Engineering (CAD ; Configurations ; Engineering ; Industrial and Production Engineering ; Knowledge bases (artificial intelligence) ; Mechanical Engineering ; Media Management ; Modules ; Original Article ; Performance evaluation ; Pipelines</subject><ispartof>International journal of advanced manufacturing technology, 2021-08, Vol.115 (11-12), p.3513-3532</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-15f77df3b119140bd35b541ae403a8b97b7557b7bbd43f3b06d2f27de14f09283</citedby><cites>FETCH-LOGICAL-c363t-15f77df3b119140bd35b541ae403a8b97b7557b7bbd43f3b06d2f27de14f09283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07248-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07248-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Strohschein, Jan</creatorcontrib><creatorcontrib>Fischbach, Andreas</creatorcontrib><creatorcontrib>Bunte, Andreas</creatorcontrib><creatorcontrib>Faeskorn-Woyke, Heide</creatorcontrib><creatorcontrib>Moriz, Natalia</creatorcontrib><creatorcontrib>Bartz-Beielstein, Thomas</creatorcontrib><title>Cognitive capabilities for the CAAI in cyber-physical production systems</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Configurations</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Modules</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Pipelines</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6sz-zc9lqC2UPCi5yWbbNqUNom7qZBv79oI3rzMMMPvvRkeIfcIjwhgniIAGmDAkYHhMmPigsxQCsEEoLokM-A6LY3OrslNjPuEa9TZjKzybts2Q_PlaVn0hWsOafCR1l2gw87TfLlc06al5eh8YP1ujE1ZHGgfuupUDk3X0jjGwR_jLbmqi0P0d799Tj5ent_zFdu8va7z5YaVQouBoaqNqWrhEBcowVVCOSWx8BJEkbmFcUapVJyrpEgY6IrX3FQeZQ0Lnok5eZh80wufJx8Hu-9OoU0nLVdKK8kx04niE1WGLsbga9uH5liE0SLYn8TslJhNidlzYlYkkZhEMcHt1oc_639U34dEbYw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Strohschein, Jan</creator><creator>Fischbach, Andreas</creator><creator>Bunte, Andreas</creator><creator>Faeskorn-Woyke, Heide</creator><creator>Moriz, Natalia</creator><creator>Bartz-Beielstein, Thomas</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210801</creationdate><title>Cognitive capabilities for the CAAI in cyber-physical production systems</title><author>Strohschein, Jan ; Fischbach, Andreas ; Bunte, Andreas ; Faeskorn-Woyke, Heide ; Moriz, Natalia ; Bartz-Beielstein, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-15f77df3b119140bd35b541ae403a8b97b7557b7bbd43f3b06d2f27de14f09283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Configurations</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Modules</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Pipelines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strohschein, Jan</creatorcontrib><creatorcontrib>Fischbach, Andreas</creatorcontrib><creatorcontrib>Bunte, Andreas</creatorcontrib><creatorcontrib>Faeskorn-Woyke, Heide</creatorcontrib><creatorcontrib>Moriz, Natalia</creatorcontrib><creatorcontrib>Bartz-Beielstein, Thomas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strohschein, Jan</au><au>Fischbach, Andreas</au><au>Bunte, Andreas</au><au>Faeskorn-Woyke, Heide</au><au>Moriz, Natalia</au><au>Bartz-Beielstein, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cognitive capabilities for the CAAI in cyber-physical production systems</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>115</volume><issue>11-12</issue><spage>3513</spage><epage>3532</epage><pages>3513-3532</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07248-3</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2021-08, Vol.115 (11-12), p.3513-3532 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2556542186 |
source | SpringerNature Journals |
subjects | Algorithms Artificial intelligence CAE) and Design Computer-Aided Engineering (CAD Configurations Engineering Industrial and Production Engineering Knowledge bases (artificial intelligence) Mechanical Engineering Media Management Modules Original Article Performance evaluation Pipelines |
title | Cognitive capabilities for the CAAI in cyber-physical production systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cognitive%20capabilities%20for%20the%20CAAI%20in%20cyber-physical%20production%20systems&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Strohschein,%20Jan&rft.date=2021-08-01&rft.volume=115&rft.issue=11-12&rft.spage=3513&rft.epage=3532&rft.pages=3513-3532&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07248-3&rft_dat=%3Cproquest_cross%3E2556542186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556542186&rft_id=info:pmid/&rfr_iscdi=true |