ZnO Based Resistive Random Access Memory Device: A Prospective Multifunctional Next-Generation Memory

Numerous works that have demonstrated the study and enhancement of switching properties of ZnO-based RRAM devices are discussed. Several native point defects that have a direct or indirect effect on ZnO are discussed. The use of doping elements, multi-layered structures, suitable bottom and top elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.105012-105047
Hauptverfasser: Isyaku, Usman Bature, Khir, Mohd Haris Bin Md, Nawi, I. Md, Zakariya, M. A., Zahoor, Furqan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous works that have demonstrated the study and enhancement of switching properties of ZnO-based RRAM devices are discussed. Several native point defects that have a direct or indirect effect on ZnO are discussed. The use of doping elements, multi-layered structures, suitable bottom and top electrodes, controlling the deposition materials, and the impact of hybrid structure for enhancing the switching dynamics are discussed. The potentials of ZnO-based RRAM for invisible and bendable devices are also covered. ZnO-based RRAM has the potential for possible application in bio-inspired cognitive computational systems. Thus, the synapse capability of ZnO is presented. The sneak-path current issue also besets ZnO-based RRAM crossbar array architecture. Hence, various attempts to subdue the bottleneck have been shown and discussed in this article. Interestingly, ZnO provides not only helpful memory features. However, it demonstrates the ability to be used in nonvolatile multifunctional memory devices. Also, this review covers various issues like the effect of electrodes, interfacial layers, proper switching layers, appropriate fabrication techniques, and proper annealing settings. These may offer a valuable understanding of the study and development of ZnO-based RRAM and should be an avenue for overcoming RRAM challenges.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3098061