Imprecise inference based on the log-rank test for accelerated life testing

This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrika 2021-08, Vol.84 (6), p.913-925
Hauptverfasser: Coolen, Frank P. A., Ahmadini, Abdullah A. H., Coolen-Maturi, Tahani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue 6
container_start_page 913
container_title Metrika
container_volume 84
creator Coolen, Frank P. A.
Ahmadini, Abdullah A. H.
Coolen-Maturi, Tahani
description This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides robustness in the resulting lower and upper survival functions for a future observation at the normal stress level. An application using data from the literature is presented, and simulations show the performance and robustness of the method. In case of model misspecification, robustness may be achieved at the price of large imprecision, which would emphasize the need for more data or further model assumptions.
doi_str_mv 10.1007/s00184-021-00807-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556408987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556408987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-af569978aa1b8651034dba384524c680315830007635f9fbbc23dee1b465f5f33</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiHwA1SWqA3j53pLFPGIiEQDEp3ldcZhQ7Ib7E3B32OySHRUU8y5dzSHkEsO1xyguskA3CoGgjMACxVTR2TCldSsFubtmEwAhGFcSn1KznJeF7wyQkzI03y7SxjajLTtIibsAtLGZ1zSvqPDO9JNv2LJdx90wDzQ2CfqQ8ANJj8UaNNGPGzabnVOTqLfZLz4nVPyen_3Mntki-eH-ex2wYKszcB81KauK-s9b6zRHKRaNl5apYUKxoLk2kooXxmpYx2bJgi5ROSNMjrqKOWUXI29u9R_7sttt-73qSsnndDaKLC1rQolRiqkPueE0e1Su_Xpy3FwP9LcKM0Vae4gzakSkmMoF7hbYfqr_if1DaS1bg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556408987</pqid></control><display><type>article</type><title>Imprecise inference based on the log-rank test for accelerated life testing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Coolen, Frank P. A. ; Ahmadini, Abdullah A. H. ; Coolen-Maturi, Tahani</creator><creatorcontrib>Coolen, Frank P. A. ; Ahmadini, Abdullah A. H. ; Coolen-Maturi, Tahani</creatorcontrib><description>This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides robustness in the resulting lower and upper survival functions for a future observation at the normal stress level. An application using data from the literature is presented, and simulations show the performance and robustness of the method. In case of model misspecification, robustness may be achieved at the price of large imprecision, which would emphasize the need for more data or further model assumptions.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-021-00807-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accelerated life tests ; Economic Theory/Quantitative Economics/Mathematical Methods ; Inference ; Mathematics and Statistics ; Nonparametric statistics ; Probability Theory and Stochastic Processes ; Rank tests ; Robustness ; Statistics</subject><ispartof>Metrika, 2021-08, Vol.84 (6), p.913-925</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-af569978aa1b8651034dba384524c680315830007635f9fbbc23dee1b465f5f33</citedby><cites>FETCH-LOGICAL-c396t-af569978aa1b8651034dba384524c680315830007635f9fbbc23dee1b465f5f33</cites><orcidid>0000-0002-8861-4298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00184-021-00807-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00184-021-00807-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Coolen, Frank P. A.</creatorcontrib><creatorcontrib>Ahmadini, Abdullah A. H.</creatorcontrib><creatorcontrib>Coolen-Maturi, Tahani</creatorcontrib><title>Imprecise inference based on the log-rank test for accelerated life testing</title><title>Metrika</title><addtitle>Metrika</addtitle><description>This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides robustness in the resulting lower and upper survival functions for a future observation at the normal stress level. An application using data from the literature is presented, and simulations show the performance and robustness of the method. In case of model misspecification, robustness may be achieved at the price of large imprecision, which would emphasize the need for more data or further model assumptions.</description><subject>Accelerated life tests</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Inference</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Rank tests</subject><subject>Robustness</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtOAzEQRS0EEiHwA1SWqA3j53pLFPGIiEQDEp3ldcZhQ7Ib7E3B32OySHRUU8y5dzSHkEsO1xyguskA3CoGgjMACxVTR2TCldSsFubtmEwAhGFcSn1KznJeF7wyQkzI03y7SxjajLTtIibsAtLGZ1zSvqPDO9JNv2LJdx90wDzQ2CfqQ8ANJj8UaNNGPGzabnVOTqLfZLz4nVPyen_3Mntki-eH-ex2wYKszcB81KauK-s9b6zRHKRaNl5apYUKxoLk2kooXxmpYx2bJgi5ROSNMjrqKOWUXI29u9R_7sttt-73qSsnndDaKLC1rQolRiqkPueE0e1Su_Xpy3FwP9LcKM0Vae4gzakSkmMoF7hbYfqr_if1DaS1bg8</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Coolen, Frank P. A.</creator><creator>Ahmadini, Abdullah A. H.</creator><creator>Coolen-Maturi, Tahani</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8861-4298</orcidid></search><sort><creationdate>20210801</creationdate><title>Imprecise inference based on the log-rank test for accelerated life testing</title><author>Coolen, Frank P. A. ; Ahmadini, Abdullah A. H. ; Coolen-Maturi, Tahani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-af569978aa1b8651034dba384524c680315830007635f9fbbc23dee1b465f5f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerated life tests</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Inference</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Rank tests</topic><topic>Robustness</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coolen, Frank P. A.</creatorcontrib><creatorcontrib>Ahmadini, Abdullah A. H.</creatorcontrib><creatorcontrib>Coolen-Maturi, Tahani</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coolen, Frank P. A.</au><au>Ahmadini, Abdullah A. H.</au><au>Coolen-Maturi, Tahani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imprecise inference based on the log-rank test for accelerated life testing</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>84</volume><issue>6</issue><spage>913</spage><epage>925</epage><pages>913-925</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides robustness in the resulting lower and upper survival functions for a future observation at the normal stress level. An application using data from the literature is presented, and simulations show the performance and robustness of the method. In case of model misspecification, robustness may be achieved at the price of large imprecision, which would emphasize the need for more data or further model assumptions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-021-00807-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8861-4298</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-1335
ispartof Metrika, 2021-08, Vol.84 (6), p.913-925
issn 0026-1335
1435-926X
language eng
recordid cdi_proquest_journals_2556408987
source SpringerLink Journals - AutoHoldings
subjects Accelerated life tests
Economic Theory/Quantitative Economics/Mathematical Methods
Inference
Mathematics and Statistics
Nonparametric statistics
Probability Theory and Stochastic Processes
Rank tests
Robustness
Statistics
title Imprecise inference based on the log-rank test for accelerated life testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imprecise%20inference%20based%20on%20the%20log-rank%20test%20for%20accelerated%20life%20testing&rft.jtitle=Metrika&rft.au=Coolen,%20Frank%20P.%20A.&rft.date=2021-08-01&rft.volume=84&rft.issue=6&rft.spage=913&rft.epage=925&rft.pages=913-925&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-021-00807-4&rft_dat=%3Cproquest_cross%3E2556408987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556408987&rft_id=info:pmid/&rfr_iscdi=true