Imprecise inference based on the log-rank test for accelerated life testing
This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides r...
Gespeichert in:
Veröffentlicht in: | Metrika 2021-08, Vol.84 (6), p.913-925 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 925 |
---|---|
container_issue | 6 |
container_start_page | 913 |
container_title | Metrika |
container_volume | 84 |
creator | Coolen, Frank P. A. Ahmadini, Abdullah A. H. Coolen-Maturi, Tahani |
description | This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides robustness in the resulting lower and upper survival functions for a future observation at the normal stress level. An application using data from the literature is presented, and simulations show the performance and robustness of the method. In case of model misspecification, robustness may be achieved at the price of large imprecision, which would emphasize the need for more data or further model assumptions. |
doi_str_mv | 10.1007/s00184-021-00807-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556408987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556408987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-af569978aa1b8651034dba384524c680315830007635f9fbbc23dee1b465f5f33</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiHwA1SWqA3j53pLFPGIiEQDEp3ldcZhQ7Ib7E3B32OySHRUU8y5dzSHkEsO1xyguskA3CoGgjMACxVTR2TCldSsFubtmEwAhGFcSn1KznJeF7wyQkzI03y7SxjajLTtIibsAtLGZ1zSvqPDO9JNv2LJdx90wDzQ2CfqQ8ANJj8UaNNGPGzabnVOTqLfZLz4nVPyen_3Mntki-eH-ex2wYKszcB81KauK-s9b6zRHKRaNl5apYUKxoLk2kooXxmpYx2bJgi5ROSNMjrqKOWUXI29u9R_7sttt-73qSsnndDaKLC1rQolRiqkPueE0e1Su_Xpy3FwP9LcKM0Vae4gzakSkmMoF7hbYfqr_if1DaS1bg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556408987</pqid></control><display><type>article</type><title>Imprecise inference based on the log-rank test for accelerated life testing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Coolen, Frank P. A. ; Ahmadini, Abdullah A. H. ; Coolen-Maturi, Tahani</creator><creatorcontrib>Coolen, Frank P. A. ; Ahmadini, Abdullah A. H. ; Coolen-Maturi, Tahani</creatorcontrib><description>This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides robustness in the resulting lower and upper survival functions for a future observation at the normal stress level. An application using data from the literature is presented, and simulations show the performance and robustness of the method. In case of model misspecification, robustness may be achieved at the price of large imprecision, which would emphasize the need for more data or further model assumptions.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-021-00807-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accelerated life tests ; Economic Theory/Quantitative Economics/Mathematical Methods ; Inference ; Mathematics and Statistics ; Nonparametric statistics ; Probability Theory and Stochastic Processes ; Rank tests ; Robustness ; Statistics</subject><ispartof>Metrika, 2021-08, Vol.84 (6), p.913-925</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-af569978aa1b8651034dba384524c680315830007635f9fbbc23dee1b465f5f33</citedby><cites>FETCH-LOGICAL-c396t-af569978aa1b8651034dba384524c680315830007635f9fbbc23dee1b465f5f33</cites><orcidid>0000-0002-8861-4298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00184-021-00807-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00184-021-00807-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Coolen, Frank P. A.</creatorcontrib><creatorcontrib>Ahmadini, Abdullah A. H.</creatorcontrib><creatorcontrib>Coolen-Maturi, Tahani</creatorcontrib><title>Imprecise inference based on the log-rank test for accelerated life testing</title><title>Metrika</title><addtitle>Metrika</addtitle><description>This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides robustness in the resulting lower and upper survival functions for a future observation at the normal stress level. An application using data from the literature is presented, and simulations show the performance and robustness of the method. In case of model misspecification, robustness may be achieved at the price of large imprecision, which would emphasize the need for more data or further model assumptions.</description><subject>Accelerated life tests</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Inference</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Rank tests</subject><subject>Robustness</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtOAzEQRS0EEiHwA1SWqA3j53pLFPGIiEQDEp3ldcZhQ7Ib7E3B32OySHRUU8y5dzSHkEsO1xyguskA3CoGgjMACxVTR2TCldSsFubtmEwAhGFcSn1KznJeF7wyQkzI03y7SxjajLTtIibsAtLGZ1zSvqPDO9JNv2LJdx90wDzQ2CfqQ8ANJj8UaNNGPGzabnVOTqLfZLz4nVPyen_3Mntki-eH-ex2wYKszcB81KauK-s9b6zRHKRaNl5apYUKxoLk2kooXxmpYx2bJgi5ROSNMjrqKOWUXI29u9R_7sttt-73qSsnndDaKLC1rQolRiqkPueE0e1Su_Xpy3FwP9LcKM0Vae4gzakSkmMoF7hbYfqr_if1DaS1bg8</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Coolen, Frank P. A.</creator><creator>Ahmadini, Abdullah A. H.</creator><creator>Coolen-Maturi, Tahani</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8861-4298</orcidid></search><sort><creationdate>20210801</creationdate><title>Imprecise inference based on the log-rank test for accelerated life testing</title><author>Coolen, Frank P. A. ; Ahmadini, Abdullah A. H. ; Coolen-Maturi, Tahani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-af569978aa1b8651034dba384524c680315830007635f9fbbc23dee1b465f5f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerated life tests</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Inference</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Rank tests</topic><topic>Robustness</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coolen, Frank P. A.</creatorcontrib><creatorcontrib>Ahmadini, Abdullah A. H.</creatorcontrib><creatorcontrib>Coolen-Maturi, Tahani</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coolen, Frank P. A.</au><au>Ahmadini, Abdullah A. H.</au><au>Coolen-Maturi, Tahani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imprecise inference based on the log-rank test for accelerated life testing</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>84</volume><issue>6</issue><spage>913</spage><epage>925</epage><pages>913-925</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>This paper presents an imprecise predictive inference method for accelerated life testing. The method is largely nonparametric, with a basic parametric function to link different stress levels. The log-rank test is used to provide imprecision for the link function parameter, which in turn provides robustness in the resulting lower and upper survival functions for a future observation at the normal stress level. An application using data from the literature is presented, and simulations show the performance and robustness of the method. In case of model misspecification, robustness may be achieved at the price of large imprecision, which would emphasize the need for more data or further model assumptions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-021-00807-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8861-4298</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-1335 |
ispartof | Metrika, 2021-08, Vol.84 (6), p.913-925 |
issn | 0026-1335 1435-926X |
language | eng |
recordid | cdi_proquest_journals_2556408987 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accelerated life tests Economic Theory/Quantitative Economics/Mathematical Methods Inference Mathematics and Statistics Nonparametric statistics Probability Theory and Stochastic Processes Rank tests Robustness Statistics |
title | Imprecise inference based on the log-rank test for accelerated life testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imprecise%20inference%20based%20on%20the%20log-rank%20test%20for%20accelerated%20life%20testing&rft.jtitle=Metrika&rft.au=Coolen,%20Frank%20P.%20A.&rft.date=2021-08-01&rft.volume=84&rft.issue=6&rft.spage=913&rft.epage=925&rft.pages=913-925&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-021-00807-4&rft_dat=%3Cproquest_cross%3E2556408987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556408987&rft_id=info:pmid/&rfr_iscdi=true |