The application of principal component cluster analysis in environment classification for Chinese cities

In order to investigate the dissimilarities of different cities in China, an approach combining principal component analysis and hierarchical clustering is proposed. Three rather than two principal components are reserved to conduct a more elaborate analysis. Based on corresponding component scores,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2020-09, Vol.569 (1), p.12040
Hauptverfasser: Wang, Jingcheng, Zhang, Lunwu, Zhang, Dingfei, Zhao, Fangchao, Yang, Xiaokui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12040
container_title IOP conference series. Earth and environmental science
container_volume 569
creator Wang, Jingcheng
Zhang, Lunwu
Zhang, Dingfei
Zhao, Fangchao
Yang, Xiaokui
description In order to investigate the dissimilarities of different cities in China, an approach combining principal component analysis and hierarchical clustering is proposed. Three rather than two principal components are reserved to conduct a more elaborate analysis. Based on corresponding component scores, dissimilarity between each city is measured during clustering. These cities are classified into seven types, and they are marked on the map of China. The result of this classification is consistent to our traditional cognition. Therefore, the principal component cluster analysis is suitable for analyzing numerous observations with variables on a large scale. This approach helps to enhance the environmental adaptability of equipments by recognizing the environment type of each city.
doi_str_mv 10.1088/1755-1315/569/1/012040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556369418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556369418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-f76badcc587341c95f1ab9d45d144c85f73e721f0eec9f2b93a9fa2d64f478543</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuvIAE3bsZJJslkspRSL1BwYV2HNJPQlGkSk6nQt3fKaEUQXJ0D_4VzPgCuMbrDqGlKzBkrMMGsZLUocYlwhSg6AZOjcHrcET8HFzlvEKo5JWIC1su1gSrGzmnVu-BhsDAm57WLqoM6bGPwxvdQd7vcmwSVV90-uwydh8Z_uBT8dtRVzs5-t9iQ4GztvMkGatc7ky_BmVVdNldfcwreHubL2VOxeHl8nt0vCk0Z6wvL65VqtWYNJxRrwSxWK9FS1mJKdcMsJ4ZX2CJjtLDVShAlrKramlrKG0bJFNyMvTGF953JvdyEXRquzrJirCa1oLgZXPXo0inknIyVw9NblfYSI3mgKg_A5AGeHKhKLEeqQ7Aagy7En-Z_Q7d_hObz1182GVtLPgHgwYhp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556369418</pqid></control><display><type>article</type><title>The application of principal component cluster analysis in environment classification for Chinese cities</title><source>Institute of Physics</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Jingcheng ; Zhang, Lunwu ; Zhang, Dingfei ; Zhao, Fangchao ; Yang, Xiaokui</creator><creatorcontrib>Wang, Jingcheng ; Zhang, Lunwu ; Zhang, Dingfei ; Zhao, Fangchao ; Yang, Xiaokui</creatorcontrib><description>In order to investigate the dissimilarities of different cities in China, an approach combining principal component analysis and hierarchical clustering is proposed. Three rather than two principal components are reserved to conduct a more elaborate analysis. Based on corresponding component scores, dissimilarity between each city is measured during clustering. These cities are classified into seven types, and they are marked on the map of China. The result of this classification is consistent to our traditional cognition. Therefore, the principal component cluster analysis is suitable for analyzing numerous observations with variables on a large scale. This approach helps to enhance the environmental adaptability of equipments by recognizing the environment type of each city.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/569/1/012040</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Adaptability ; Cities ; Classification ; Cluster analysis ; Clustering ; Cognition ; Principal components analysis</subject><ispartof>IOP conference series. Earth and environmental science, 2020-09, Vol.569 (1), p.12040</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-f76badcc587341c95f1ab9d45d144c85f73e721f0eec9f2b93a9fa2d64f478543</citedby><cites>FETCH-LOGICAL-c455t-f76badcc587341c95f1ab9d45d144c85f73e721f0eec9f2b93a9fa2d64f478543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/569/1/012040/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Wang, Jingcheng</creatorcontrib><creatorcontrib>Zhang, Lunwu</creatorcontrib><creatorcontrib>Zhang, Dingfei</creatorcontrib><creatorcontrib>Zhao, Fangchao</creatorcontrib><creatorcontrib>Yang, Xiaokui</creatorcontrib><title>The application of principal component cluster analysis in environment classification for Chinese cities</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>In order to investigate the dissimilarities of different cities in China, an approach combining principal component analysis and hierarchical clustering is proposed. Three rather than two principal components are reserved to conduct a more elaborate analysis. Based on corresponding component scores, dissimilarity between each city is measured during clustering. These cities are classified into seven types, and they are marked on the map of China. The result of this classification is consistent to our traditional cognition. Therefore, the principal component cluster analysis is suitable for analyzing numerous observations with variables on a large scale. This approach helps to enhance the environmental adaptability of equipments by recognizing the environment type of each city.</description><subject>Adaptability</subject><subject>Cities</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cognition</subject><subject>Principal components analysis</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkMtKAzEUhoMoWKuvIAE3bsZJJslkspRSL1BwYV2HNJPQlGkSk6nQt3fKaEUQXJ0D_4VzPgCuMbrDqGlKzBkrMMGsZLUocYlwhSg6AZOjcHrcET8HFzlvEKo5JWIC1su1gSrGzmnVu-BhsDAm57WLqoM6bGPwxvdQd7vcmwSVV90-uwydh8Z_uBT8dtRVzs5-t9iQ4GztvMkGatc7ky_BmVVdNldfcwreHubL2VOxeHl8nt0vCk0Z6wvL65VqtWYNJxRrwSxWK9FS1mJKdcMsJ4ZX2CJjtLDVShAlrKramlrKG0bJFNyMvTGF953JvdyEXRquzrJirCa1oLgZXPXo0inknIyVw9NblfYSI3mgKg_A5AGeHKhKLEeqQ7Aagy7En-Z_Q7d_hObz1182GVtLPgHgwYhp</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wang, Jingcheng</creator><creator>Zhang, Lunwu</creator><creator>Zhang, Dingfei</creator><creator>Zhao, Fangchao</creator><creator>Yang, Xiaokui</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20200901</creationdate><title>The application of principal component cluster analysis in environment classification for Chinese cities</title><author>Wang, Jingcheng ; Zhang, Lunwu ; Zhang, Dingfei ; Zhao, Fangchao ; Yang, Xiaokui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-f76badcc587341c95f1ab9d45d144c85f73e721f0eec9f2b93a9fa2d64f478543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptability</topic><topic>Cities</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cognition</topic><topic>Principal components analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingcheng</creatorcontrib><creatorcontrib>Zhang, Lunwu</creatorcontrib><creatorcontrib>Zhang, Dingfei</creatorcontrib><creatorcontrib>Zhao, Fangchao</creatorcontrib><creatorcontrib>Yang, Xiaokui</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingcheng</au><au>Zhang, Lunwu</au><au>Zhang, Dingfei</au><au>Zhao, Fangchao</au><au>Yang, Xiaokui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of principal component cluster analysis in environment classification for Chinese cities</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>569</volume><issue>1</issue><spage>12040</spage><pages>12040-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>In order to investigate the dissimilarities of different cities in China, an approach combining principal component analysis and hierarchical clustering is proposed. Three rather than two principal components are reserved to conduct a more elaborate analysis. Based on corresponding component scores, dissimilarity between each city is measured during clustering. These cities are classified into seven types, and they are marked on the map of China. The result of this classification is consistent to our traditional cognition. Therefore, the principal component cluster analysis is suitable for analyzing numerous observations with variables on a large scale. This approach helps to enhance the environmental adaptability of equipments by recognizing the environment type of each city.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/569/1/012040</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2020-09, Vol.569 (1), p.12040
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2556369418
source Institute of Physics; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals
subjects Adaptability
Cities
Classification
Cluster analysis
Clustering
Cognition
Principal components analysis
title The application of principal component cluster analysis in environment classification for Chinese cities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20principal%20component%20cluster%20analysis%20in%20environment%20classification%20for%20Chinese%20cities&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Wang,%20Jingcheng&rft.date=2020-09-01&rft.volume=569&rft.issue=1&rft.spage=12040&rft.pages=12040-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/569/1/012040&rft_dat=%3Cproquest_cross%3E2556369418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556369418&rft_id=info:pmid/&rfr_iscdi=true