Reimagining the Data-Driven Microscopy Paradigm
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2021-08, Vol.27 (S1), p.54-55 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | S1 |
container_start_page | 54 |
container_title | Microscopy and microanalysis |
container_volume | 27 |
creator | Spurgeon, Steven |
description | |
doi_str_mv | 10.1017/S1431927621000787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556256235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927621000787</cupid><sourcerecordid>2556256235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1577-8d88a68211f3e11f92cd9029b73feb35cd8dcb4e8c867734b183e09c396320e03</originalsourceid><addsrcrecordid>eNp1UNtKxDAQDaLguvoBvhV8rptJmiZ9lF1vsKJ4eQ5pMq1ZbLumXWH_3tRd8EGEYWaYOefMhZBzoJdAQc5eIONQMJkzoJRKJQ_IJJZEqgDE4U8O6dg_Jid9v4oYTmU-IbNn9I2pfevbOhneMVmYwaSL4L-wTR68DV1vu_U2eTLBOF83p-SoMh89nu3jlLzdXL_O79Ll4-39_GqZWhBSpsopZXLFACqO0RXMuoKyopS8wpIL65SzZYbKqlxKnpWgONLC8iLnjCLlU3Kx012H7nOD_aBX3Sa0caRmQuQsGhcRBTvUuGcfsNLrEM8JWw1Uj3_Rf_4SOXzPMU0ZvKvxV_p_1jfQTmIe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556256235</pqid></control><display><type>article</type><title>Reimagining the Data-Driven Microscopy Paradigm</title><source>Cambridge University Press Journals Complete</source><creator>Spurgeon, Steven</creator><creatorcontrib>Spurgeon, Steven</creatorcontrib><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927621000787</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analytical Sciences Symposia ; Full System and Workflow Automation for Enabling Big Data and Machine Learning in Electron Microscopy</subject><ispartof>Microscopy and microanalysis, 2021-08, Vol.27 (S1), p.54-55</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1431927621000787/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Spurgeon, Steven</creatorcontrib><title>Reimagining the Data-Driven Microscopy Paradigm</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><subject>Analytical Sciences Symposia</subject><subject>Full System and Workflow Automation for Enabling Big Data and Machine Learning in Electron Microscopy</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UNtKxDAQDaLguvoBvhV8rptJmiZ9lF1vsKJ4eQ5pMq1ZbLumXWH_3tRd8EGEYWaYOefMhZBzoJdAQc5eIONQMJkzoJRKJQ_IJJZEqgDE4U8O6dg_Jid9v4oYTmU-IbNn9I2pfevbOhneMVmYwaSL4L-wTR68DV1vu_U2eTLBOF83p-SoMh89nu3jlLzdXL_O79Ll4-39_GqZWhBSpsopZXLFACqO0RXMuoKyopS8wpIL65SzZYbKqlxKnpWgONLC8iLnjCLlU3Kx012H7nOD_aBX3Sa0caRmQuQsGhcRBTvUuGcfsNLrEM8JWw1Uj3_Rf_4SOXzPMU0ZvKvxV_p_1jfQTmIe</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Spurgeon, Steven</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>202108</creationdate><title>Reimagining the Data-Driven Microscopy Paradigm</title><author>Spurgeon, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1577-8d88a68211f3e11f92cd9029b73feb35cd8dcb4e8c867734b183e09c396320e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Sciences Symposia</topic><topic>Full System and Workflow Automation for Enabling Big Data and Machine Learning in Electron Microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spurgeon, Steven</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spurgeon, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reimagining the Data-Driven Microscopy Paradigm</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2021-08</date><risdate>2021</risdate><volume>27</volume><issue>S1</issue><spage>54</spage><epage>55</epage><pages>54-55</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1431927621000787</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-9276 |
ispartof | Microscopy and microanalysis, 2021-08, Vol.27 (S1), p.54-55 |
issn | 1431-9276 1435-8115 |
language | eng |
recordid | cdi_proquest_journals_2556256235 |
source | Cambridge University Press Journals Complete |
subjects | Analytical Sciences Symposia Full System and Workflow Automation for Enabling Big Data and Machine Learning in Electron Microscopy |
title | Reimagining the Data-Driven Microscopy Paradigm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reimagining%20the%20Data-Driven%20Microscopy%20Paradigm&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Spurgeon,%20Steven&rft.date=2021-08&rft.volume=27&rft.issue=S1&rft.spage=54&rft.epage=55&rft.pages=54-55&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927621000787&rft_dat=%3Cproquest_cross%3E2556256235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556256235&rft_id=info:pmid/&rft_cupid=10_1017_S1431927621000787&rfr_iscdi=true |