Microstructure and strengthening mechanisms in FCC-structured single-phase TiC–CoCrFeCuNiAl0.3 HEACs with deformation twinning

This study aimed to investigate dislocation structures in CuNiCoFeCrAl0.3 alloy particles using a transmission electron microscope (TEM). A non-equiatomic CoCrFeCuNiAl0.3 high-entropy alloy composite (HEAC) reinforced with TiC5vol% nanoparticles was produced by mechanical alloying and spark plasma s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141215, Article 141215
Hauptverfasser: Yang, S.F., Wen, J.N., Mo, J., Su, J.Y., Liu, H., Chen, J.L., Mi, Y.H., Zhang, B.S., Zhang, F.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 141215
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 814
creator Yang, S.F.
Wen, J.N.
Mo, J.
Su, J.Y.
Liu, H.
Chen, J.L.
Mi, Y.H.
Zhang, B.S.
Zhang, F.Y.
description This study aimed to investigate dislocation structures in CuNiCoFeCrAl0.3 alloy particles using a transmission electron microscope (TEM). A non-equiatomic CoCrFeCuNiAl0.3 high-entropy alloy composite (HEAC) reinforced with TiC5vol% nanoparticles was produced by mechanical alloying and spark plasma sintering. X-ray and TEM microanalyses confirmed the predominance of a nanotwinned single-phase face-centered cubic (FCC) solid solution with TiC nanoparticles. Further findings revealed that twin structure formation in FCC high-entropy alloys (HEAs) by the powder metallurgy technology was dependent on dislocations and the stratified structure formed in particles during mechanical alloying, low stacking-fault energy γSF, pressure, and hardness phase. The TiC5vol%–CoCrFeCuNiAl0.3 HEAC had the following excellent comprehensive mechanical properties: yield strength, 1582 MPa; fracture strength, 2185 MPa; and plastic strain, 23.60%. The dislocation glide and semi-twin expansion in HEAs provided excellent plasticity, while TiC particles and transgranular twins contributed to the material strength.
doi_str_mv 10.1016/j.msea.2021.141215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556035574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321004846</els_id><sourcerecordid>2556035574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-1eedfb2f1d86918e77e89e9e41db00d74b153a0dcf7c3826511266cfaae167713</originalsourceid><addsrcrecordid>eNp9kM9q3DAQh0VoIdu0L9CTIGe7GsnyH8hlEdmmkLSX9Cy00jirZS1vJDmht7xD37BPUpsNOeY0DHy_3wwfIV-BlcCg_rYvh4Sm5IxDCRVwkGdkBW0jiqoT9QeyYh2HQrJOnJNPKe0ZY1AxuSIvd97GMeU42TxFpCY4Om8YHvIOgw8PdEC7M8GnIVEf6Eap4o2e0Zk4YHHcmYT03qt_L3_VqOIG1fTTrw-sFPTmeq0SffZ5Rx32YxxM9mOg-dmHpf8z-dibQ8Ivr_OC_N5c36ub4vbX9x9qfVtYwdtcAKLrt7wH19YdtNg02HbYYQVuy5hrqi1IYZizfWNFy2sJwOva9sYg1E0D4oJcnnqPcXycMGW9H6cY5pOaS1kzIWVTzRQ_UYuUFLHXx-gHE_9oYHoxrfd6Ma0X0_pkeg5dnUI4___kMepkPQaLzke0WbvRvxf_D18tiSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556035574</pqid></control><display><type>article</type><title>Microstructure and strengthening mechanisms in FCC-structured single-phase TiC–CoCrFeCuNiAl0.3 HEACs with deformation twinning</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, S.F. ; Wen, J.N. ; Mo, J. ; Su, J.Y. ; Liu, H. ; Chen, J.L. ; Mi, Y.H. ; Zhang, B.S. ; Zhang, F.Y.</creator><creatorcontrib>Yang, S.F. ; Wen, J.N. ; Mo, J. ; Su, J.Y. ; Liu, H. ; Chen, J.L. ; Mi, Y.H. ; Zhang, B.S. ; Zhang, F.Y.</creatorcontrib><description>This study aimed to investigate dislocation structures in CuNiCoFeCrAl0.3 alloy particles using a transmission electron microscope (TEM). A non-equiatomic CoCrFeCuNiAl0.3 high-entropy alloy composite (HEAC) reinforced with TiC5vol% nanoparticles was produced by mechanical alloying and spark plasma sintering. X-ray and TEM microanalyses confirmed the predominance of a nanotwinned single-phase face-centered cubic (FCC) solid solution with TiC nanoparticles. Further findings revealed that twin structure formation in FCC high-entropy alloys (HEAs) by the powder metallurgy technology was dependent on dislocations and the stratified structure formed in particles during mechanical alloying, low stacking-fault energy γSF, pressure, and hardness phase. The TiC5vol%–CoCrFeCuNiAl0.3 HEAC had the following excellent comprehensive mechanical properties: yield strength, 1582 MPa; fracture strength, 2185 MPa; and plastic strain, 23.60%. The dislocation glide and semi-twin expansion in HEAs provided excellent plasticity, while TiC particles and transgranular twins contributed to the material strength.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141215</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy powders ; Alloys ; Deformation twins ; Entropy of formation ; Face centered cubic lattice ; Fracture strength ; High entropy alloys ; Interface ; Mechanical alloying ; Mechanical properties ; Microstructure ; Nanoparticles ; Plasma sintering ; Plastic deformation ; Powder metallurgy ; Sintering (powder metallurgy) ; Solid solutions ; Spark plasma sintering ; Stacking fault energy ; Titanium carbide ; Transmission electron microscopy ; Twinning</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141215, Article 141215</ispartof><rights>2021</rights><rights>Copyright Elsevier BV May 13, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-1eedfb2f1d86918e77e89e9e41db00d74b153a0dcf7c3826511266cfaae167713</citedby><cites>FETCH-LOGICAL-c328t-1eedfb2f1d86918e77e89e9e41db00d74b153a0dcf7c3826511266cfaae167713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2021.141215$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Yang, S.F.</creatorcontrib><creatorcontrib>Wen, J.N.</creatorcontrib><creatorcontrib>Mo, J.</creatorcontrib><creatorcontrib>Su, J.Y.</creatorcontrib><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Chen, J.L.</creatorcontrib><creatorcontrib>Mi, Y.H.</creatorcontrib><creatorcontrib>Zhang, B.S.</creatorcontrib><creatorcontrib>Zhang, F.Y.</creatorcontrib><title>Microstructure and strengthening mechanisms in FCC-structured single-phase TiC–CoCrFeCuNiAl0.3 HEACs with deformation twinning</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>This study aimed to investigate dislocation structures in CuNiCoFeCrAl0.3 alloy particles using a transmission electron microscope (TEM). A non-equiatomic CoCrFeCuNiAl0.3 high-entropy alloy composite (HEAC) reinforced with TiC5vol% nanoparticles was produced by mechanical alloying and spark plasma sintering. X-ray and TEM microanalyses confirmed the predominance of a nanotwinned single-phase face-centered cubic (FCC) solid solution with TiC nanoparticles. Further findings revealed that twin structure formation in FCC high-entropy alloys (HEAs) by the powder metallurgy technology was dependent on dislocations and the stratified structure formed in particles during mechanical alloying, low stacking-fault energy γSF, pressure, and hardness phase. The TiC5vol%–CoCrFeCuNiAl0.3 HEAC had the following excellent comprehensive mechanical properties: yield strength, 1582 MPa; fracture strength, 2185 MPa; and plastic strain, 23.60%. The dislocation glide and semi-twin expansion in HEAs provided excellent plasticity, while TiC particles and transgranular twins contributed to the material strength.</description><subject>Alloy powders</subject><subject>Alloys</subject><subject>Deformation twins</subject><subject>Entropy of formation</subject><subject>Face centered cubic lattice</subject><subject>Fracture strength</subject><subject>High entropy alloys</subject><subject>Interface</subject><subject>Mechanical alloying</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoparticles</subject><subject>Plasma sintering</subject><subject>Plastic deformation</subject><subject>Powder metallurgy</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid solutions</subject><subject>Spark plasma sintering</subject><subject>Stacking fault energy</subject><subject>Titanium carbide</subject><subject>Transmission electron microscopy</subject><subject>Twinning</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9q3DAQh0VoIdu0L9CTIGe7GsnyH8hlEdmmkLSX9Cy00jirZS1vJDmht7xD37BPUpsNOeY0DHy_3wwfIV-BlcCg_rYvh4Sm5IxDCRVwkGdkBW0jiqoT9QeyYh2HQrJOnJNPKe0ZY1AxuSIvd97GMeU42TxFpCY4Om8YHvIOgw8PdEC7M8GnIVEf6Eap4o2e0Zk4YHHcmYT03qt_L3_VqOIG1fTTrw-sFPTmeq0SffZ5Rx32YxxM9mOg-dmHpf8z-dibQ8Ivr_OC_N5c36ub4vbX9x9qfVtYwdtcAKLrt7wH19YdtNg02HbYYQVuy5hrqi1IYZizfWNFy2sJwOva9sYg1E0D4oJcnnqPcXycMGW9H6cY5pOaS1kzIWVTzRQ_UYuUFLHXx-gHE_9oYHoxrfd6Ma0X0_pkeg5dnUI4___kMepkPQaLzke0WbvRvxf_D18tiSQ</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Yang, S.F.</creator><creator>Wen, J.N.</creator><creator>Mo, J.</creator><creator>Su, J.Y.</creator><creator>Liu, H.</creator><creator>Chen, J.L.</creator><creator>Mi, Y.H.</creator><creator>Zhang, B.S.</creator><creator>Zhang, F.Y.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210513</creationdate><title>Microstructure and strengthening mechanisms in FCC-structured single-phase TiC–CoCrFeCuNiAl0.3 HEACs with deformation twinning</title><author>Yang, S.F. ; Wen, J.N. ; Mo, J. ; Su, J.Y. ; Liu, H. ; Chen, J.L. ; Mi, Y.H. ; Zhang, B.S. ; Zhang, F.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-1eedfb2f1d86918e77e89e9e41db00d74b153a0dcf7c3826511266cfaae167713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloy powders</topic><topic>Alloys</topic><topic>Deformation twins</topic><topic>Entropy of formation</topic><topic>Face centered cubic lattice</topic><topic>Fracture strength</topic><topic>High entropy alloys</topic><topic>Interface</topic><topic>Mechanical alloying</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoparticles</topic><topic>Plasma sintering</topic><topic>Plastic deformation</topic><topic>Powder metallurgy</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid solutions</topic><topic>Spark plasma sintering</topic><topic>Stacking fault energy</topic><topic>Titanium carbide</topic><topic>Transmission electron microscopy</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, S.F.</creatorcontrib><creatorcontrib>Wen, J.N.</creatorcontrib><creatorcontrib>Mo, J.</creatorcontrib><creatorcontrib>Su, J.Y.</creatorcontrib><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Chen, J.L.</creatorcontrib><creatorcontrib>Mi, Y.H.</creatorcontrib><creatorcontrib>Zhang, B.S.</creatorcontrib><creatorcontrib>Zhang, F.Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, S.F.</au><au>Wen, J.N.</au><au>Mo, J.</au><au>Su, J.Y.</au><au>Liu, H.</au><au>Chen, J.L.</au><au>Mi, Y.H.</au><au>Zhang, B.S.</au><au>Zhang, F.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and strengthening mechanisms in FCC-structured single-phase TiC–CoCrFeCuNiAl0.3 HEACs with deformation twinning</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-05-13</date><risdate>2021</risdate><volume>814</volume><spage>141215</spage><pages>141215-</pages><artnum>141215</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This study aimed to investigate dislocation structures in CuNiCoFeCrAl0.3 alloy particles using a transmission electron microscope (TEM). A non-equiatomic CoCrFeCuNiAl0.3 high-entropy alloy composite (HEAC) reinforced with TiC5vol% nanoparticles was produced by mechanical alloying and spark plasma sintering. X-ray and TEM microanalyses confirmed the predominance of a nanotwinned single-phase face-centered cubic (FCC) solid solution with TiC nanoparticles. Further findings revealed that twin structure formation in FCC high-entropy alloys (HEAs) by the powder metallurgy technology was dependent on dislocations and the stratified structure formed in particles during mechanical alloying, low stacking-fault energy γSF, pressure, and hardness phase. The TiC5vol%–CoCrFeCuNiAl0.3 HEAC had the following excellent comprehensive mechanical properties: yield strength, 1582 MPa; fracture strength, 2185 MPa; and plastic strain, 23.60%. The dislocation glide and semi-twin expansion in HEAs provided excellent plasticity, while TiC particles and transgranular twins contributed to the material strength.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141215</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141215, Article 141215
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2556035574
source ScienceDirect Journals (5 years ago - present)
subjects Alloy powders
Alloys
Deformation twins
Entropy of formation
Face centered cubic lattice
Fracture strength
High entropy alloys
Interface
Mechanical alloying
Mechanical properties
Microstructure
Nanoparticles
Plasma sintering
Plastic deformation
Powder metallurgy
Sintering (powder metallurgy)
Solid solutions
Spark plasma sintering
Stacking fault energy
Titanium carbide
Transmission electron microscopy
Twinning
title Microstructure and strengthening mechanisms in FCC-structured single-phase TiC–CoCrFeCuNiAl0.3 HEACs with deformation twinning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20strengthening%20mechanisms%20in%20FCC-structured%20single-phase%20TiC%E2%80%93CoCrFeCuNiAl0.3%20HEACs%20with%20deformation%20twinning&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yang,%20S.F.&rft.date=2021-05-13&rft.volume=814&rft.spage=141215&rft.pages=141215-&rft.artnum=141215&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141215&rft_dat=%3Cproquest_cross%3E2556035574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556035574&rft_id=info:pmid/&rft_els_id=S0921509321004846&rfr_iscdi=true