Sn microalloying Al–Cu alloys with enhanced fracture toughness

Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141243, Article 141243
Hauptverfasser: Wang, R.H., Wen, Y., Chen, B.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 141243
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 814
creator Wang, R.H.
Wen, Y.
Chen, B.A.
description Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experimental results showed that the Sn addition promoted the dispersion of θ′ -Al2Cu precipitates with refined size and increased number density. APT examinations revealed that the Sn microalloying mechanism was mainly the heterogeneous nucleation of θ′ precipitates on Sn particles. The microstructural evolution with Sn addition resulted in a decrease in ductility but an increase in both yield strength and fracture toughness. In particular, the fracture toughness was increased by over 60% at 0.1 wt% Sn addition, indicative of a significant microalloying effect. The ductility inversely scaled with the strength, while the fracture toughness simultaneously increased with the strength. These relationships are rationalized by considering a competition between dislocation-precipitate interaction and precipitate-matrix deformation discrepancy as the dominant strain localization mechanism, which is modulated by the Sn-affected precipitation as well as the constraint condition.
doi_str_mv 10.1016/j.msea.2021.141243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556031761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321005128</els_id><sourcerecordid>2556031761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9af4db5611babc779d83d1a3815bd7ad071a6396cffe13289232c48d1f9553ec3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA59ZM0rQNeHBZXBUWPKjnkCbpbkq3XZNW2Zvv4Bv6JLbWs6eBYb6Z-T-ELoHEQCC9ruJdsCqmhEIMCdCEHaEZ5BmLEsHSYzQjgkLEiWCn6CyEihACCeEzdPvc4J3TvlV13R5cs8GL-vvza9nj30bAH67bYttsVaOtwaVXuuu9xV3bb7aNDeEcnZSqDvbir87R6-ruZfkQrZ_uH5eLdaQZzbtIqDIxBU8BClXoLBMmZwYUy4EXJlOGZKBSJlJdlhYGQlBGdZIbKAXnzGo2R1fT3r1v33obOlm1vW-Gk5JynhIGWQrDFJ2mhkQheFvKvXc75Q8SiBxNyUqOpuRoSk6mBuhmguzw_7uzXgbt7JjXeas7aVr3H_4Dp45yEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556031761</pqid></control><display><type>article</type><title>Sn microalloying Al–Cu alloys with enhanced fracture toughness</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, R.H. ; Wen, Y. ; Chen, B.A.</creator><creatorcontrib>Wang, R.H. ; Wen, Y. ; Chen, B.A.</creatorcontrib><description>Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experimental results showed that the Sn addition promoted the dispersion of θ′ -Al2Cu precipitates with refined size and increased number density. APT examinations revealed that the Sn microalloying mechanism was mainly the heterogeneous nucleation of θ′ precipitates on Sn particles. The microstructural evolution with Sn addition resulted in a decrease in ductility but an increase in both yield strength and fracture toughness. In particular, the fracture toughness was increased by over 60% at 0.1 wt% Sn addition, indicative of a significant microalloying effect. The ductility inversely scaled with the strength, while the fracture toughness simultaneously increased with the strength. These relationships are rationalized by considering a competition between dislocation-precipitate interaction and precipitate-matrix deformation discrepancy as the dominant strain localization mechanism, which is modulated by the Sn-affected precipitation as well as the constraint condition.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141243</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum base alloys ; Al–Cu alloy ; Chemical precipitation ; Copper ; Ductility ; Fracture toughness ; Heat treating ; Mechanical properties ; Microalloying ; Microalloying effect ; Microstructure ; Nucleation ; Precipitates ; Precipitation ; Room temperature ; Strain localization ; Tensile tests ; Tin ; Transmission electron microscopy</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141243, Article 141243</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 13, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9af4db5611babc779d83d1a3815bd7ad071a6396cffe13289232c48d1f9553ec3</citedby><cites>FETCH-LOGICAL-c328t-9af4db5611babc779d83d1a3815bd7ad071a6396cffe13289232c48d1f9553ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2021.141243$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, R.H.</creatorcontrib><creatorcontrib>Wen, Y.</creatorcontrib><creatorcontrib>Chen, B.A.</creatorcontrib><title>Sn microalloying Al–Cu alloys with enhanced fracture toughness</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experimental results showed that the Sn addition promoted the dispersion of θ′ -Al2Cu precipitates with refined size and increased number density. APT examinations revealed that the Sn microalloying mechanism was mainly the heterogeneous nucleation of θ′ precipitates on Sn particles. The microstructural evolution with Sn addition resulted in a decrease in ductility but an increase in both yield strength and fracture toughness. In particular, the fracture toughness was increased by over 60% at 0.1 wt% Sn addition, indicative of a significant microalloying effect. The ductility inversely scaled with the strength, while the fracture toughness simultaneously increased with the strength. These relationships are rationalized by considering a competition between dislocation-precipitate interaction and precipitate-matrix deformation discrepancy as the dominant strain localization mechanism, which is modulated by the Sn-affected precipitation as well as the constraint condition.</description><subject>Aluminum base alloys</subject><subject>Al–Cu alloy</subject><subject>Chemical precipitation</subject><subject>Copper</subject><subject>Ductility</subject><subject>Fracture toughness</subject><subject>Heat treating</subject><subject>Mechanical properties</subject><subject>Microalloying</subject><subject>Microalloying effect</subject><subject>Microstructure</subject><subject>Nucleation</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Room temperature</subject><subject>Strain localization</subject><subject>Tensile tests</subject><subject>Tin</subject><subject>Transmission electron microscopy</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeA59ZM0rQNeHBZXBUWPKjnkCbpbkq3XZNW2Zvv4Bv6JLbWs6eBYb6Z-T-ELoHEQCC9ruJdsCqmhEIMCdCEHaEZ5BmLEsHSYzQjgkLEiWCn6CyEihACCeEzdPvc4J3TvlV13R5cs8GL-vvza9nj30bAH67bYttsVaOtwaVXuuu9xV3bb7aNDeEcnZSqDvbir87R6-ruZfkQrZ_uH5eLdaQZzbtIqDIxBU8BClXoLBMmZwYUy4EXJlOGZKBSJlJdlhYGQlBGdZIbKAXnzGo2R1fT3r1v33obOlm1vW-Gk5JynhIGWQrDFJ2mhkQheFvKvXc75Q8SiBxNyUqOpuRoSk6mBuhmguzw_7uzXgbt7JjXeas7aVr3H_4Dp45yEA</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Wang, R.H.</creator><creator>Wen, Y.</creator><creator>Chen, B.A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210513</creationdate><title>Sn microalloying Al–Cu alloys with enhanced fracture toughness</title><author>Wang, R.H. ; Wen, Y. ; Chen, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9af4db5611babc779d83d1a3815bd7ad071a6396cffe13289232c48d1f9553ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum base alloys</topic><topic>Al–Cu alloy</topic><topic>Chemical precipitation</topic><topic>Copper</topic><topic>Ductility</topic><topic>Fracture toughness</topic><topic>Heat treating</topic><topic>Mechanical properties</topic><topic>Microalloying</topic><topic>Microalloying effect</topic><topic>Microstructure</topic><topic>Nucleation</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Room temperature</topic><topic>Strain localization</topic><topic>Tensile tests</topic><topic>Tin</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, R.H.</creatorcontrib><creatorcontrib>Wen, Y.</creatorcontrib><creatorcontrib>Chen, B.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, R.H.</au><au>Wen, Y.</au><au>Chen, B.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sn microalloying Al–Cu alloys with enhanced fracture toughness</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-05-13</date><risdate>2021</risdate><volume>814</volume><spage>141243</spage><pages>141243-</pages><artnum>141243</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experimental results showed that the Sn addition promoted the dispersion of θ′ -Al2Cu precipitates with refined size and increased number density. APT examinations revealed that the Sn microalloying mechanism was mainly the heterogeneous nucleation of θ′ precipitates on Sn particles. The microstructural evolution with Sn addition resulted in a decrease in ductility but an increase in both yield strength and fracture toughness. In particular, the fracture toughness was increased by over 60% at 0.1 wt% Sn addition, indicative of a significant microalloying effect. The ductility inversely scaled with the strength, while the fracture toughness simultaneously increased with the strength. These relationships are rationalized by considering a competition between dislocation-precipitate interaction and precipitate-matrix deformation discrepancy as the dominant strain localization mechanism, which is modulated by the Sn-affected precipitation as well as the constraint condition.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141243</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141243, Article 141243
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2556031761
source Elsevier ScienceDirect Journals Complete
subjects Aluminum base alloys
Al–Cu alloy
Chemical precipitation
Copper
Ductility
Fracture toughness
Heat treating
Mechanical properties
Microalloying
Microalloying effect
Microstructure
Nucleation
Precipitates
Precipitation
Room temperature
Strain localization
Tensile tests
Tin
Transmission electron microscopy
title Sn microalloying Al–Cu alloys with enhanced fracture toughness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sn%20microalloying%20Al%E2%80%93Cu%20alloys%20with%20enhanced%20fracture%20toughness&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wang,%20R.H.&rft.date=2021-05-13&rft.volume=814&rft.spage=141243&rft.pages=141243-&rft.artnum=141243&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141243&rft_dat=%3Cproquest_cross%3E2556031761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556031761&rft_id=info:pmid/&rft_els_id=S0921509321005128&rfr_iscdi=true