Sn microalloying Al–Cu alloys with enhanced fracture toughness
Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experi...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141243, Article 141243 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 141243 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 814 |
creator | Wang, R.H. Wen, Y. Chen, B.A. |
description | Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experimental results showed that the Sn addition promoted the dispersion of θ′ -Al2Cu precipitates with refined size and increased number density. APT examinations revealed that the Sn microalloying mechanism was mainly the heterogeneous nucleation of θ′ precipitates on Sn particles. The microstructural evolution with Sn addition resulted in a decrease in ductility but an increase in both yield strength and fracture toughness. In particular, the fracture toughness was increased by over 60% at 0.1 wt% Sn addition, indicative of a significant microalloying effect. The ductility inversely scaled with the strength, while the fracture toughness simultaneously increased with the strength. These relationships are rationalized by considering a competition between dislocation-precipitate interaction and precipitate-matrix deformation discrepancy as the dominant strain localization mechanism, which is modulated by the Sn-affected precipitation as well as the constraint condition. |
doi_str_mv | 10.1016/j.msea.2021.141243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556031761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321005128</els_id><sourcerecordid>2556031761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9af4db5611babc779d83d1a3815bd7ad071a6396cffe13289232c48d1f9553ec3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA59ZM0rQNeHBZXBUWPKjnkCbpbkq3XZNW2Zvv4Bv6JLbWs6eBYb6Z-T-ELoHEQCC9ruJdsCqmhEIMCdCEHaEZ5BmLEsHSYzQjgkLEiWCn6CyEihACCeEzdPvc4J3TvlV13R5cs8GL-vvza9nj30bAH67bYttsVaOtwaVXuuu9xV3bb7aNDeEcnZSqDvbir87R6-ruZfkQrZ_uH5eLdaQZzbtIqDIxBU8BClXoLBMmZwYUy4EXJlOGZKBSJlJdlhYGQlBGdZIbKAXnzGo2R1fT3r1v33obOlm1vW-Gk5JynhIGWQrDFJ2mhkQheFvKvXc75Q8SiBxNyUqOpuRoSk6mBuhmguzw_7uzXgbt7JjXeas7aVr3H_4Dp45yEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556031761</pqid></control><display><type>article</type><title>Sn microalloying Al–Cu alloys with enhanced fracture toughness</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, R.H. ; Wen, Y. ; Chen, B.A.</creator><creatorcontrib>Wang, R.H. ; Wen, Y. ; Chen, B.A.</creatorcontrib><description>Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experimental results showed that the Sn addition promoted the dispersion of θ′ -Al2Cu precipitates with refined size and increased number density. APT examinations revealed that the Sn microalloying mechanism was mainly the heterogeneous nucleation of θ′ precipitates on Sn particles. The microstructural evolution with Sn addition resulted in a decrease in ductility but an increase in both yield strength and fracture toughness. In particular, the fracture toughness was increased by over 60% at 0.1 wt% Sn addition, indicative of a significant microalloying effect. The ductility inversely scaled with the strength, while the fracture toughness simultaneously increased with the strength. These relationships are rationalized by considering a competition between dislocation-precipitate interaction and precipitate-matrix deformation discrepancy as the dominant strain localization mechanism, which is modulated by the Sn-affected precipitation as well as the constraint condition.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141243</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum base alloys ; Al–Cu alloy ; Chemical precipitation ; Copper ; Ductility ; Fracture toughness ; Heat treating ; Mechanical properties ; Microalloying ; Microalloying effect ; Microstructure ; Nucleation ; Precipitates ; Precipitation ; Room temperature ; Strain localization ; Tensile tests ; Tin ; Transmission electron microscopy</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141243, Article 141243</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 13, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9af4db5611babc779d83d1a3815bd7ad071a6396cffe13289232c48d1f9553ec3</citedby><cites>FETCH-LOGICAL-c328t-9af4db5611babc779d83d1a3815bd7ad071a6396cffe13289232c48d1f9553ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2021.141243$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, R.H.</creatorcontrib><creatorcontrib>Wen, Y.</creatorcontrib><creatorcontrib>Chen, B.A.</creatorcontrib><title>Sn microalloying Al–Cu alloys with enhanced fracture toughness</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experimental results showed that the Sn addition promoted the dispersion of θ′ -Al2Cu precipitates with refined size and increased number density. APT examinations revealed that the Sn microalloying mechanism was mainly the heterogeneous nucleation of θ′ precipitates on Sn particles. The microstructural evolution with Sn addition resulted in a decrease in ductility but an increase in both yield strength and fracture toughness. In particular, the fracture toughness was increased by over 60% at 0.1 wt% Sn addition, indicative of a significant microalloying effect. The ductility inversely scaled with the strength, while the fracture toughness simultaneously increased with the strength. These relationships are rationalized by considering a competition between dislocation-precipitate interaction and precipitate-matrix deformation discrepancy as the dominant strain localization mechanism, which is modulated by the Sn-affected precipitation as well as the constraint condition.</description><subject>Aluminum base alloys</subject><subject>Al–Cu alloy</subject><subject>Chemical precipitation</subject><subject>Copper</subject><subject>Ductility</subject><subject>Fracture toughness</subject><subject>Heat treating</subject><subject>Mechanical properties</subject><subject>Microalloying</subject><subject>Microalloying effect</subject><subject>Microstructure</subject><subject>Nucleation</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Room temperature</subject><subject>Strain localization</subject><subject>Tensile tests</subject><subject>Tin</subject><subject>Transmission electron microscopy</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeA59ZM0rQNeHBZXBUWPKjnkCbpbkq3XZNW2Zvv4Bv6JLbWs6eBYb6Z-T-ELoHEQCC9ruJdsCqmhEIMCdCEHaEZ5BmLEsHSYzQjgkLEiWCn6CyEihACCeEzdPvc4J3TvlV13R5cs8GL-vvza9nj30bAH67bYttsVaOtwaVXuuu9xV3bb7aNDeEcnZSqDvbir87R6-ruZfkQrZ_uH5eLdaQZzbtIqDIxBU8BClXoLBMmZwYUy4EXJlOGZKBSJlJdlhYGQlBGdZIbKAXnzGo2R1fT3r1v33obOlm1vW-Gk5JynhIGWQrDFJ2mhkQheFvKvXc75Q8SiBxNyUqOpuRoSk6mBuhmguzw_7uzXgbt7JjXeas7aVr3H_4Dp45yEA</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Wang, R.H.</creator><creator>Wen, Y.</creator><creator>Chen, B.A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210513</creationdate><title>Sn microalloying Al–Cu alloys with enhanced fracture toughness</title><author>Wang, R.H. ; Wen, Y. ; Chen, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9af4db5611babc779d83d1a3815bd7ad071a6396cffe13289232c48d1f9553ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum base alloys</topic><topic>Al–Cu alloy</topic><topic>Chemical precipitation</topic><topic>Copper</topic><topic>Ductility</topic><topic>Fracture toughness</topic><topic>Heat treating</topic><topic>Mechanical properties</topic><topic>Microalloying</topic><topic>Microalloying effect</topic><topic>Microstructure</topic><topic>Nucleation</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Room temperature</topic><topic>Strain localization</topic><topic>Tensile tests</topic><topic>Tin</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, R.H.</creatorcontrib><creatorcontrib>Wen, Y.</creatorcontrib><creatorcontrib>Chen, B.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, R.H.</au><au>Wen, Y.</au><au>Chen, B.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sn microalloying Al–Cu alloys with enhanced fracture toughness</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-05-13</date><risdate>2021</risdate><volume>814</volume><spage>141243</spage><pages>141243-</pages><artnum>141243</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Effect of minor Sn additions (0.05, 0.10 wt%) on the microstructure and room-temperature mechanical properties of Al-3.0 wt%Cu alloy was studied by using transmission electron microscopy (TEM), atom probe tomography (APT), tensile testing, and fracture toughness measurement, respectively. TEM experimental results showed that the Sn addition promoted the dispersion of θ′ -Al2Cu precipitates with refined size and increased number density. APT examinations revealed that the Sn microalloying mechanism was mainly the heterogeneous nucleation of θ′ precipitates on Sn particles. The microstructural evolution with Sn addition resulted in a decrease in ductility but an increase in both yield strength and fracture toughness. In particular, the fracture toughness was increased by over 60% at 0.1 wt% Sn addition, indicative of a significant microalloying effect. The ductility inversely scaled with the strength, while the fracture toughness simultaneously increased with the strength. These relationships are rationalized by considering a competition between dislocation-precipitate interaction and precipitate-matrix deformation discrepancy as the dominant strain localization mechanism, which is modulated by the Sn-affected precipitation as well as the constraint condition.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141243</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-05, Vol.814, p.141243, Article 141243 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2556031761 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aluminum base alloys Al–Cu alloy Chemical precipitation Copper Ductility Fracture toughness Heat treating Mechanical properties Microalloying Microalloying effect Microstructure Nucleation Precipitates Precipitation Room temperature Strain localization Tensile tests Tin Transmission electron microscopy |
title | Sn microalloying Al–Cu alloys with enhanced fracture toughness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sn%20microalloying%20Al%E2%80%93Cu%20alloys%20with%20enhanced%20fracture%20toughness&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wang,%20R.H.&rft.date=2021-05-13&rft.volume=814&rft.spage=141243&rft.pages=141243-&rft.artnum=141243&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141243&rft_dat=%3Cproquest_cross%3E2556031761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556031761&rft_id=info:pmid/&rft_els_id=S0921509321005128&rfr_iscdi=true |