Fuzzy Cognitive Map vs Regression
A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights o...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2021-07, Vol.57 (4), p.605-616 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 616 |
---|---|
container_issue | 4 |
container_start_page | 605 |
container_title | Cybernetics and systems analysis |
container_volume | 57 |
creator | Rotshtein, A. P. Katielnikov, D. I. |
description | A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights of the arcs are found using the genetic algorithm in which the chromosomes are generated from the intervals of their feasible values and the selection criterion is the sum of the squared deviations between the model and the observed output values. |
doi_str_mv | 10.1007/s10559-021-00385-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2555985374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695513007</galeid><sourcerecordid>A695513007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-68244c04133d699ab352e8ece8e47c842ebf7ae16620906f3462a5558fce17a33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPFk4fUJLP5OpZitaAIVc8hTbPLlna3JrvF9tebuoL0IkOYEJ53MjwIXVMypITI-0gJ5xoTRjEhoDiGE9SjXAJWAPI03YkgmIAW5-gixiVJFJGqh24m7X6_G4zroiqbcusHL3Yz2MbBzBfBx1jW1SU6y-0q-qvf3kcfk4f38RN-fn2cjkfP2IFmDRaKZZkjGQVYCK3tHDjzyrt0MulUxvw8l9ZTIRjRROSQCWY55yp3nkoL0Ee33dxNqD9bHxuzrNtQpS8NS5xWHGSWqGFHFXblTVnldROsS7Xw69LVlc_L9D4SmnMKyUwK3B0FEtP4r6awbYxm-jY7ZlnHulDHGHxuNqFc27AzlJiDZ9N5Nsmz-fFsDntDF4oJrgof_vb-J_UNIkh8OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555985374</pqid></control><display><type>article</type><title>Fuzzy Cognitive Map vs Regression</title><source>Springer Online Journals Complete</source><creator>Rotshtein, A. P. ; Katielnikov, D. I.</creator><creatorcontrib>Rotshtein, A. P. ; Katielnikov, D. I.</creatorcontrib><description>A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights of the arcs are found using the genetic algorithm in which the chromosomes are generated from the intervals of their feasible values and the selection criterion is the sum of the squared deviations between the model and the observed output values.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-021-00385-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Cognitive maps ; Cognitive models ; Control ; Genetic algorithms ; Mathematics ; Mathematics and Statistics ; Processor Architectures ; Regression analysis ; Software Engineering/Programming and Operating Systems ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2021-07, Vol.57 (4), p.605-616</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2002</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-68244c04133d699ab352e8ece8e47c842ebf7ae16620906f3462a5558fce17a33</citedby><cites>FETCH-LOGICAL-c392t-68244c04133d699ab352e8ece8e47c842ebf7ae16620906f3462a5558fce17a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-021-00385-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-021-00385-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Rotshtein, A. P.</creatorcontrib><creatorcontrib>Katielnikov, D. I.</creatorcontrib><title>Fuzzy Cognitive Map vs Regression</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights of the arcs are found using the genetic algorithm in which the chromosomes are generated from the intervals of their feasible values and the selection criterion is the sum of the squared deviations between the model and the observed output values.</description><subject>Artificial Intelligence</subject><subject>Cognitive maps</subject><subject>Cognitive models</subject><subject>Control</subject><subject>Genetic algorithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Processor Architectures</subject><subject>Regression analysis</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPFk4fUJLP5OpZitaAIVc8hTbPLlna3JrvF9tebuoL0IkOYEJ53MjwIXVMypITI-0gJ5xoTRjEhoDiGE9SjXAJWAPI03YkgmIAW5-gixiVJFJGqh24m7X6_G4zroiqbcusHL3Yz2MbBzBfBx1jW1SU6y-0q-qvf3kcfk4f38RN-fn2cjkfP2IFmDRaKZZkjGQVYCK3tHDjzyrt0MulUxvw8l9ZTIRjRROSQCWY55yp3nkoL0Ee33dxNqD9bHxuzrNtQpS8NS5xWHGSWqGFHFXblTVnldROsS7Xw69LVlc_L9D4SmnMKyUwK3B0FEtP4r6awbYxm-jY7ZlnHulDHGHxuNqFc27AzlJiDZ9N5Nsmz-fFsDntDF4oJrgof_vb-J_UNIkh8OQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Rotshtein, A. P.</creator><creator>Katielnikov, D. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20210701</creationdate><title>Fuzzy Cognitive Map vs Regression</title><author>Rotshtein, A. P. ; Katielnikov, D. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-68244c04133d699ab352e8ece8e47c842ebf7ae16620906f3462a5558fce17a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Cognitive maps</topic><topic>Cognitive models</topic><topic>Control</topic><topic>Genetic algorithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Processor Architectures</topic><topic>Regression analysis</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotshtein, A. P.</creatorcontrib><creatorcontrib>Katielnikov, D. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotshtein, A. P.</au><au>Katielnikov, D. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Cognitive Map vs Regression</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><spage>605</spage><epage>616</epage><pages>605-616</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights of the arcs are found using the genetic algorithm in which the chromosomes are generated from the intervals of their feasible values and the selection criterion is the sum of the squared deviations between the model and the observed output values.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-021-00385-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1060-0396 |
ispartof | Cybernetics and systems analysis, 2021-07, Vol.57 (4), p.605-616 |
issn | 1060-0396 1573-8337 |
language | eng |
recordid | cdi_proquest_journals_2555985374 |
source | Springer Online Journals Complete |
subjects | Artificial Intelligence Cognitive maps Cognitive models Control Genetic algorithms Mathematics Mathematics and Statistics Processor Architectures Regression analysis Software Engineering/Programming and Operating Systems Systems Theory |
title | Fuzzy Cognitive Map vs Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Cognitive%20Map%20vs%20Regression&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Rotshtein,%20A.%20P.&rft.date=2021-07-01&rft.volume=57&rft.issue=4&rft.spage=605&rft.epage=616&rft.pages=605-616&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-021-00385-3&rft_dat=%3Cgale_proqu%3EA695513007%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555985374&rft_id=info:pmid/&rft_galeid=A695513007&rfr_iscdi=true |