Fuzzy Cognitive Map vs Regression

A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2021-07, Vol.57 (4), p.605-616
Hauptverfasser: Rotshtein, A. P., Katielnikov, D. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 616
container_issue 4
container_start_page 605
container_title Cybernetics and systems analysis
container_volume 57
creator Rotshtein, A. P.
Katielnikov, D. I.
description A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights of the arcs are found using the genetic algorithm in which the chromosomes are generated from the intervals of their feasible values and the selection criterion is the sum of the squared deviations between the model and the observed output values.
doi_str_mv 10.1007/s10559-021-00385-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2555985374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695513007</galeid><sourcerecordid>A695513007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-68244c04133d699ab352e8ece8e47c842ebf7ae16620906f3462a5558fce17a33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPFk4fUJLP5OpZitaAIVc8hTbPLlna3JrvF9tebuoL0IkOYEJ53MjwIXVMypITI-0gJ5xoTRjEhoDiGE9SjXAJWAPI03YkgmIAW5-gixiVJFJGqh24m7X6_G4zroiqbcusHL3Yz2MbBzBfBx1jW1SU6y-0q-qvf3kcfk4f38RN-fn2cjkfP2IFmDRaKZZkjGQVYCK3tHDjzyrt0MulUxvw8l9ZTIRjRROSQCWY55yp3nkoL0Ee33dxNqD9bHxuzrNtQpS8NS5xWHGSWqGFHFXblTVnldROsS7Xw69LVlc_L9D4SmnMKyUwK3B0FEtP4r6awbYxm-jY7ZlnHulDHGHxuNqFc27AzlJiDZ9N5Nsmz-fFsDntDF4oJrgof_vb-J_UNIkh8OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555985374</pqid></control><display><type>article</type><title>Fuzzy Cognitive Map vs Regression</title><source>Springer Online Journals Complete</source><creator>Rotshtein, A. P. ; Katielnikov, D. I.</creator><creatorcontrib>Rotshtein, A. P. ; Katielnikov, D. I.</creatorcontrib><description>A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights of the arcs are found using the genetic algorithm in which the chromosomes are generated from the intervals of their feasible values and the selection criterion is the sum of the squared deviations between the model and the observed output values.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-021-00385-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Cognitive maps ; Cognitive models ; Control ; Genetic algorithms ; Mathematics ; Mathematics and Statistics ; Processor Architectures ; Regression analysis ; Software Engineering/Programming and Operating Systems ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2021-07, Vol.57 (4), p.605-616</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2002</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-68244c04133d699ab352e8ece8e47c842ebf7ae16620906f3462a5558fce17a33</citedby><cites>FETCH-LOGICAL-c392t-68244c04133d699ab352e8ece8e47c842ebf7ae16620906f3462a5558fce17a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-021-00385-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-021-00385-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Rotshtein, A. P.</creatorcontrib><creatorcontrib>Katielnikov, D. I.</creatorcontrib><title>Fuzzy Cognitive Map vs Regression</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights of the arcs are found using the genetic algorithm in which the chromosomes are generated from the intervals of their feasible values and the selection criterion is the sum of the squared deviations between the model and the observed output values.</description><subject>Artificial Intelligence</subject><subject>Cognitive maps</subject><subject>Cognitive models</subject><subject>Control</subject><subject>Genetic algorithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Processor Architectures</subject><subject>Regression analysis</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPFk4fUJLP5OpZitaAIVc8hTbPLlna3JrvF9tebuoL0IkOYEJ53MjwIXVMypITI-0gJ5xoTRjEhoDiGE9SjXAJWAPI03YkgmIAW5-gixiVJFJGqh24m7X6_G4zroiqbcusHL3Yz2MbBzBfBx1jW1SU6y-0q-qvf3kcfk4f38RN-fn2cjkfP2IFmDRaKZZkjGQVYCK3tHDjzyrt0MulUxvw8l9ZTIRjRROSQCWY55yp3nkoL0Ee33dxNqD9bHxuzrNtQpS8NS5xWHGSWqGFHFXblTVnldROsS7Xw69LVlc_L9D4SmnMKyUwK3B0FEtP4r6awbYxm-jY7ZlnHulDHGHxuNqFc27AzlJiDZ9N5Nsmz-fFsDntDF4oJrgof_vb-J_UNIkh8OQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Rotshtein, A. P.</creator><creator>Katielnikov, D. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20210701</creationdate><title>Fuzzy Cognitive Map vs Regression</title><author>Rotshtein, A. P. ; Katielnikov, D. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-68244c04133d699ab352e8ece8e47c842ebf7ae16620906f3462a5558fce17a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Cognitive maps</topic><topic>Cognitive models</topic><topic>Control</topic><topic>Genetic algorithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Processor Architectures</topic><topic>Regression analysis</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotshtein, A. P.</creatorcontrib><creatorcontrib>Katielnikov, D. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotshtein, A. P.</au><au>Katielnikov, D. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Cognitive Map vs Regression</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><spage>605</spage><epage>616</epage><pages>605-616</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for modeling the inputs-output dependence based on expert-experimental information. To calculate the output value at the given input values, increments of variables are used. The optimal values of the weights of the arcs are found using the genetic algorithm in which the chromosomes are generated from the intervals of their feasible values and the selection criterion is the sum of the squared deviations between the model and the observed output values.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-021-00385-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2021-07, Vol.57 (4), p.605-616
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_2555985374
source Springer Online Journals Complete
subjects Artificial Intelligence
Cognitive maps
Cognitive models
Control
Genetic algorithms
Mathematics
Mathematics and Statistics
Processor Architectures
Regression analysis
Software Engineering/Programming and Operating Systems
Systems Theory
title Fuzzy Cognitive Map vs Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Cognitive%20Map%20vs%20Regression&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Rotshtein,%20A.%20P.&rft.date=2021-07-01&rft.volume=57&rft.issue=4&rft.spage=605&rft.epage=616&rft.pages=605-616&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-021-00385-3&rft_dat=%3Cgale_proqu%3EA695513007%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555985374&rft_id=info:pmid/&rft_galeid=A695513007&rfr_iscdi=true