Distinguishing newforms by their Hecke eigenvalues

Let f ,  g be distinct normalized Hecke eigenforms of weights k 1 , k 2 lying in the subspace of newforms with Fourier coefficients { n ( k 1 - 1 ) / 2 λ f ( n ) } n ∈ N and { n ( k 2 - 1 ) / 2 λ g ( n ) } n ∈ N respectively. For such newforms f ,  g of CM type and primes p , we study the natural de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in number theory 2021-09, Vol.7 (3), Article 49
Hauptverfasser: Gun, Sanoli, Murty, V. Kumar, Paul, Biplab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Research in number theory
container_volume 7
creator Gun, Sanoli
Murty, V. Kumar
Paul, Biplab
description Let f ,  g be distinct normalized Hecke eigenforms of weights k 1 , k 2 lying in the subspace of newforms with Fourier coefficients { n ( k 1 - 1 ) / 2 λ f ( n ) } n ∈ N and { n ( k 2 - 1 ) / 2 λ g ( n ) } n ∈ N respectively. For such newforms f ,  g of CM type and primes p , we study the natural density of the set S = { p | λ f ( p ) = λ g ( p ) } . We show that the upper natural density of S is ≤ 3 / 4 if f ≠ g and it is equal to 1/2 when f and g have different weights and have the same associated CM (quadratic) field. Further, f and g have different associated CM (quadratic) fields if and only if the natural density of S is 1/4. When at least one of f ,  g is a non-CM form, we study the natural density of the sets S + ( x , α ) = { p ≤ x | θ f ( p ) + θ g ( p ) = α } and S - ( x , β ) = { p ≤ x | θ f ( p ) - θ g ( p ) = β } where θ f ( p ) , θ g ( p ) ∈ [ 0 , π ] are the angles associated to the p -th Hecke eigen values of f ,  g respectively and α ∈ [ 0 , 2 π ] , β ∈ [ - π , π ] . In this case, we show that S + ( x , α ) and S - ( x , β ) have natural density zero when f and g are distinct and not twists of each other. Finally, we establish an explicit link between the elements of these sets and sign changes of Fourier coefficients at prime powers which allows us to improve a number of existing results in this set-up.
doi_str_mv 10.1007/s40993-021-00277-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555985086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555985086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-83bc337cad00f36ef8f80a1845149a060f7933f47034bf9176d42a91f358c4533</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EElXpCzBFYjYc-9ixPaJyKVIlFpgtJ7XblDYpdgLq22MIEhvT-Yf_ovMRcsngmgGomyTAGKTAGQXgSlF1QiYcS6RGSnmateScAivhnMxS2gJkjYJzPiH8rkl9066HJm3yKVr_Gbq4T0V1LPqNb2Kx8PWbL3yz9u2H2w0-XZCz4HbJz37vlLw-3L_MF3T5_Pg0v13SmgvTU41VjahqtwIIWPqggwbHtJBMGAclBGUQg1CAogqGqXIluDMsoNS1kIhTcjX2HmL3nnd7u-2G2OZJy_NfRkvQZXbx0VXHLqXogz3EZu_i0TKw33jsiMdmPPYHj1U5hGMoZXO79vGv-p_UF4x_Zds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555985086</pqid></control><display><type>article</type><title>Distinguishing newforms by their Hecke eigenvalues</title><source>Springer Nature - Complete Springer Journals</source><creator>Gun, Sanoli ; Murty, V. Kumar ; Paul, Biplab</creator><creatorcontrib>Gun, Sanoli ; Murty, V. Kumar ; Paul, Biplab</creatorcontrib><description>Let f ,  g be distinct normalized Hecke eigenforms of weights k 1 , k 2 lying in the subspace of newforms with Fourier coefficients { n ( k 1 - 1 ) / 2 λ f ( n ) } n ∈ N and { n ( k 2 - 1 ) / 2 λ g ( n ) } n ∈ N respectively. For such newforms f ,  g of CM type and primes p , we study the natural density of the set S = { p | λ f ( p ) = λ g ( p ) } . We show that the upper natural density of S is ≤ 3 / 4 if f ≠ g and it is equal to 1/2 when f and g have different weights and have the same associated CM (quadratic) field. Further, f and g have different associated CM (quadratic) fields if and only if the natural density of S is 1/4. When at least one of f ,  g is a non-CM form, we study the natural density of the sets S + ( x , α ) = { p ≤ x | θ f ( p ) + θ g ( p ) = α } and S - ( x , β ) = { p ≤ x | θ f ( p ) - θ g ( p ) = β } where θ f ( p ) , θ g ( p ) ∈ [ 0 , π ] are the angles associated to the p -th Hecke eigen values of f ,  g respectively and α ∈ [ 0 , 2 π ] , β ∈ [ - π , π ] . In this case, we show that S + ( x , α ) and S - ( x , β ) have natural density zero when f and g are distinct and not twists of each other. Finally, we establish an explicit link between the elements of these sets and sign changes of Fourier coefficients at prime powers which allows us to improve a number of existing results in this set-up.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-021-00277-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Density ; Eigenvalues ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>Research in number theory, 2021-09, Vol.7 (3), Article 49</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-83bc337cad00f36ef8f80a1845149a060f7933f47034bf9176d42a91f358c4533</citedby><cites>FETCH-LOGICAL-c249t-83bc337cad00f36ef8f80a1845149a060f7933f47034bf9176d42a91f358c4533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40993-021-00277-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40993-021-00277-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gun, Sanoli</creatorcontrib><creatorcontrib>Murty, V. Kumar</creatorcontrib><creatorcontrib>Paul, Biplab</creatorcontrib><title>Distinguishing newforms by their Hecke eigenvalues</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>Let f ,  g be distinct normalized Hecke eigenforms of weights k 1 , k 2 lying in the subspace of newforms with Fourier coefficients { n ( k 1 - 1 ) / 2 λ f ( n ) } n ∈ N and { n ( k 2 - 1 ) / 2 λ g ( n ) } n ∈ N respectively. For such newforms f ,  g of CM type and primes p , we study the natural density of the set S = { p | λ f ( p ) = λ g ( p ) } . We show that the upper natural density of S is ≤ 3 / 4 if f ≠ g and it is equal to 1/2 when f and g have different weights and have the same associated CM (quadratic) field. Further, f and g have different associated CM (quadratic) fields if and only if the natural density of S is 1/4. When at least one of f ,  g is a non-CM form, we study the natural density of the sets S + ( x , α ) = { p ≤ x | θ f ( p ) + θ g ( p ) = α } and S - ( x , β ) = { p ≤ x | θ f ( p ) - θ g ( p ) = β } where θ f ( p ) , θ g ( p ) ∈ [ 0 , π ] are the angles associated to the p -th Hecke eigen values of f ,  g respectively and α ∈ [ 0 , 2 π ] , β ∈ [ - π , π ] . In this case, we show that S + ( x , α ) and S - ( x , β ) have natural density zero when f and g are distinct and not twists of each other. Finally, we establish an explicit link between the elements of these sets and sign changes of Fourier coefficients at prime powers which allows us to improve a number of existing results in this set-up.</description><subject>Density</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EElXpCzBFYjYc-9ixPaJyKVIlFpgtJ7XblDYpdgLq22MIEhvT-Yf_ovMRcsngmgGomyTAGKTAGQXgSlF1QiYcS6RGSnmateScAivhnMxS2gJkjYJzPiH8rkl9066HJm3yKVr_Gbq4T0V1LPqNb2Kx8PWbL3yz9u2H2w0-XZCz4HbJz37vlLw-3L_MF3T5_Pg0v13SmgvTU41VjahqtwIIWPqggwbHtJBMGAclBGUQg1CAogqGqXIluDMsoNS1kIhTcjX2HmL3nnd7u-2G2OZJy_NfRkvQZXbx0VXHLqXogz3EZu_i0TKw33jsiMdmPPYHj1U5hGMoZXO79vGv-p_UF4x_Zds</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Gun, Sanoli</creator><creator>Murty, V. Kumar</creator><creator>Paul, Biplab</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Distinguishing newforms by their Hecke eigenvalues</title><author>Gun, Sanoli ; Murty, V. Kumar ; Paul, Biplab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-83bc337cad00f36ef8f80a1845149a060f7933f47034bf9176d42a91f358c4533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Density</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gun, Sanoli</creatorcontrib><creatorcontrib>Murty, V. Kumar</creatorcontrib><creatorcontrib>Paul, Biplab</creatorcontrib><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gun, Sanoli</au><au>Murty, V. Kumar</au><au>Paul, Biplab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing newforms by their Hecke eigenvalues</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>7</volume><issue>3</issue><artnum>49</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>Let f ,  g be distinct normalized Hecke eigenforms of weights k 1 , k 2 lying in the subspace of newforms with Fourier coefficients { n ( k 1 - 1 ) / 2 λ f ( n ) } n ∈ N and { n ( k 2 - 1 ) / 2 λ g ( n ) } n ∈ N respectively. For such newforms f ,  g of CM type and primes p , we study the natural density of the set S = { p | λ f ( p ) = λ g ( p ) } . We show that the upper natural density of S is ≤ 3 / 4 if f ≠ g and it is equal to 1/2 when f and g have different weights and have the same associated CM (quadratic) field. Further, f and g have different associated CM (quadratic) fields if and only if the natural density of S is 1/4. When at least one of f ,  g is a non-CM form, we study the natural density of the sets S + ( x , α ) = { p ≤ x | θ f ( p ) + θ g ( p ) = α } and S - ( x , β ) = { p ≤ x | θ f ( p ) - θ g ( p ) = β } where θ f ( p ) , θ g ( p ) ∈ [ 0 , π ] are the angles associated to the p -th Hecke eigen values of f ,  g respectively and α ∈ [ 0 , 2 π ] , β ∈ [ - π , π ] . In this case, we show that S + ( x , α ) and S - ( x , β ) have natural density zero when f and g are distinct and not twists of each other. Finally, we establish an explicit link between the elements of these sets and sign changes of Fourier coefficients at prime powers which allows us to improve a number of existing results in this set-up.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-021-00277-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 2522-0160
ispartof Research in number theory, 2021-09, Vol.7 (3), Article 49
issn 2522-0160
2363-9555
language eng
recordid cdi_proquest_journals_2555985086
source Springer Nature - Complete Springer Journals
subjects Density
Eigenvalues
Mathematics
Mathematics and Statistics
Number Theory
title Distinguishing newforms by their Hecke eigenvalues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20newforms%20by%20their%20Hecke%20eigenvalues&rft.jtitle=Research%20in%20number%20theory&rft.au=Gun,%20Sanoli&rft.date=2021-09-01&rft.volume=7&rft.issue=3&rft.artnum=49&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-021-00277-7&rft_dat=%3Cproquest_cross%3E2555985086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555985086&rft_id=info:pmid/&rfr_iscdi=true