On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers

We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-08, Vol.256 (5), p.628-639
Hauptverfasser: Davydovych, V. V., Cherniha, R. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 5
container_start_page 628
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 256
creator Davydovych, V. V.
Cherniha, R. M.
description We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct exact solutions in the form of traveling fronts, and establish their properties. We present the plots of traveling fronts and propose the corresponding interpretation for the description of the language shift in Ukraine during the Soviet times.
doi_str_mv 10.1007/s10958-021-05449-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555984486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555984486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2295-75ca15422118d6a432314733bb5772595cd6b08a214c4f5ff01607f4b10a425a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mzwa-PkiFpeUqEH4Gy56bqktHawUwH_HrdF4sZpd0fzzUpTFOecXXLG9FXirIaKMsEpA6VqCgfFgIOWtNI1HOadaUGl1Oq4OElpyTJUVnJQfE49seQp-FXr0UbyaPs3XNu-beyKPIY5rogLkWSRjDE1se36NngS3E4ahXWHfbuTrJ_nG7_a1KNvcGsZt85hRN_TifWLjV0gee7QvmNMp8WRs6uEZ79zWLze3ryM7ulkevcwup7QRogaqIbGclBCcF7NS6ukkFxpKWcz0FpADc28nLHKCq4a5cA5xkumnZpxZpUAK4fFxT63i-Fjg6k3y7CJPr80AgDqSqmqzC6xdzUxpBTRmS62axu_DWdmW7DZF2xywWZXsIEMyT2UstkvMP5F_0P9AOelfXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555984486</pqid></control><display><type>article</type><title>On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Davydovych, V. V. ; Cherniha, R. M.</creator><creatorcontrib>Davydovych, V. V. ; Cherniha, R. M.</creatorcontrib><description>We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct exact solutions in the form of traveling fronts, and establish their properties. We present the plots of traveling fronts and propose the corresponding interpretation for the description of the language shift in Ukraine during the Soviet times.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05449-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Competition ; Exact solutions ; Mathematics ; Mathematics and Statistics ; Nonlinear systems</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-08, Vol.256 (5), p.628-639</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2295-75ca15422118d6a432314733bb5772595cd6b08a214c4f5ff01607f4b10a425a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05449-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05449-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Davydovych, V. V.</creatorcontrib><creatorcontrib>Cherniha, R. M.</creatorcontrib><title>On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct exact solutions in the form of traveling fronts, and establish their properties. We present the plots of traveling fronts and propose the corresponding interpretation for the description of the language shift in Ukraine during the Soviet times.</description><subject>Competition</subject><subject>Exact solutions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mzwa-PkiFpeUqEH4Gy56bqktHawUwH_HrdF4sZpd0fzzUpTFOecXXLG9FXirIaKMsEpA6VqCgfFgIOWtNI1HOadaUGl1Oq4OElpyTJUVnJQfE49seQp-FXr0UbyaPs3XNu-beyKPIY5rogLkWSRjDE1se36NngS3E4ahXWHfbuTrJ_nG7_a1KNvcGsZt85hRN_TifWLjV0gee7QvmNMp8WRs6uEZ79zWLze3ryM7ulkevcwup7QRogaqIbGclBCcF7NS6ukkFxpKWcz0FpADc28nLHKCq4a5cA5xkumnZpxZpUAK4fFxT63i-Fjg6k3y7CJPr80AgDqSqmqzC6xdzUxpBTRmS62axu_DWdmW7DZF2xywWZXsIEMyT2UstkvMP5F_0P9AOelfXw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Davydovych, V. V.</creator><creator>Cherniha, R. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers</title><author>Davydovych, V. V. ; Cherniha, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2295-75ca15422118d6a432314733bb5772595cd6b08a214c4f5ff01607f4b10a425a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Competition</topic><topic>Exact solutions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davydovych, V. V.</creatorcontrib><creatorcontrib>Cherniha, R. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davydovych, V. V.</au><au>Cherniha, R. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>256</volume><issue>5</issue><spage>628</spage><epage>639</epage><pages>628-639</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct exact solutions in the form of traveling fronts, and establish their properties. We present the plots of traveling fronts and propose the corresponding interpretation for the description of the language shift in Ukraine during the Soviet times.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05449-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-08, Vol.256 (5), p.628-639
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2555984486
source SpringerLink Journals - AutoHoldings
subjects Competition
Exact solutions
Mathematics
Mathematics and Statistics
Nonlinear systems
title On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Nonlinear%20Mathematical%20Model%20for%20the%20Description%20of%20the%20Competition%20and%20Coexistence%20of%20Different-Language%20Speakers&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Davydovych,%20V.%20V.&rft.date=2021-08-01&rft.volume=256&rft.issue=5&rft.spage=628&rft.epage=639&rft.pages=628-639&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05449-5&rft_dat=%3Cproquest_cross%3E2555984486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555984486&rft_id=info:pmid/&rfr_iscdi=true