On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers
We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct ex...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-08, Vol.256 (5), p.628-639 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | 5 |
container_start_page | 628 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 256 |
creator | Davydovych, V. V. Cherniha, R. M. |
description | We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct exact solutions in the form of traveling fronts, and establish their properties. We present the plots of traveling fronts and propose the corresponding interpretation for the description of the language shift in Ukraine during the Soviet times. |
doi_str_mv | 10.1007/s10958-021-05449-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555984486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555984486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2295-75ca15422118d6a432314733bb5772595cd6b08a214c4f5ff01607f4b10a425a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mzwa-PkiFpeUqEH4Gy56bqktHawUwH_HrdF4sZpd0fzzUpTFOecXXLG9FXirIaKMsEpA6VqCgfFgIOWtNI1HOadaUGl1Oq4OElpyTJUVnJQfE49seQp-FXr0UbyaPs3XNu-beyKPIY5rogLkWSRjDE1se36NngS3E4ahXWHfbuTrJ_nG7_a1KNvcGsZt85hRN_TifWLjV0gee7QvmNMp8WRs6uEZ79zWLze3ryM7ulkevcwup7QRogaqIbGclBCcF7NS6ukkFxpKWcz0FpADc28nLHKCq4a5cA5xkumnZpxZpUAK4fFxT63i-Fjg6k3y7CJPr80AgDqSqmqzC6xdzUxpBTRmS62axu_DWdmW7DZF2xywWZXsIEMyT2UstkvMP5F_0P9AOelfXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555984486</pqid></control><display><type>article</type><title>On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Davydovych, V. V. ; Cherniha, R. M.</creator><creatorcontrib>Davydovych, V. V. ; Cherniha, R. M.</creatorcontrib><description>We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct exact solutions in the form of traveling fronts, and establish their properties. We present the plots of traveling fronts and propose the corresponding interpretation for the description of the language shift in Ukraine during the Soviet times.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05449-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Competition ; Exact solutions ; Mathematics ; Mathematics and Statistics ; Nonlinear systems</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-08, Vol.256 (5), p.628-639</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2295-75ca15422118d6a432314733bb5772595cd6b08a214c4f5ff01607f4b10a425a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05449-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05449-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Davydovych, V. V.</creatorcontrib><creatorcontrib>Cherniha, R. M.</creatorcontrib><title>On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct exact solutions in the form of traveling fronts, and establish their properties. We present the plots of traveling fronts and propose the corresponding interpretation for the description of the language shift in Ukraine during the Soviet times.</description><subject>Competition</subject><subject>Exact solutions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mzwa-PkiFpeUqEH4Gy56bqktHawUwH_HrdF4sZpd0fzzUpTFOecXXLG9FXirIaKMsEpA6VqCgfFgIOWtNI1HOadaUGl1Oq4OElpyTJUVnJQfE49seQp-FXr0UbyaPs3XNu-beyKPIY5rogLkWSRjDE1se36NngS3E4ahXWHfbuTrJ_nG7_a1KNvcGsZt85hRN_TifWLjV0gee7QvmNMp8WRs6uEZ79zWLze3ryM7ulkevcwup7QRogaqIbGclBCcF7NS6ukkFxpKWcz0FpADc28nLHKCq4a5cA5xkumnZpxZpUAK4fFxT63i-Fjg6k3y7CJPr80AgDqSqmqzC6xdzUxpBTRmS62axu_DWdmW7DZF2xywWZXsIEMyT2UstkvMP5F_0P9AOelfXw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Davydovych, V. V.</creator><creator>Cherniha, R. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers</title><author>Davydovych, V. V. ; Cherniha, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2295-75ca15422118d6a432314733bb5772595cd6b08a214c4f5ff01607f4b10a425a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Competition</topic><topic>Exact solutions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davydovych, V. V.</creatorcontrib><creatorcontrib>Cherniha, R. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davydovych, V. V.</au><au>Cherniha, R. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>256</volume><issue>5</issue><spage>628</spage><epage>639</epage><pages>628-639</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the well-known three-component nonlinear system of equations of reaction-diffusion-type simulating the processes of competition and coexistence of different-language speakers. A simplified modification of this system is proposed. For this system, we describe the Lie symmetries, construct exact solutions in the form of traveling fronts, and establish their properties. We present the plots of traveling fronts and propose the corresponding interpretation for the description of the language shift in Ukraine during the Soviet times.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05449-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2021-08, Vol.256 (5), p.628-639 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2555984486 |
source | SpringerLink Journals - AutoHoldings |
subjects | Competition Exact solutions Mathematics Mathematics and Statistics Nonlinear systems |
title | On a Nonlinear Mathematical Model for the Description of the Competition and Coexistence of Different-Language Speakers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Nonlinear%20Mathematical%20Model%20for%20the%20Description%20of%20the%20Competition%20and%20Coexistence%20of%20Different-Language%20Speakers&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Davydovych,%20V.%20V.&rft.date=2021-08-01&rft.volume=256&rft.issue=5&rft.spage=628&rft.epage=639&rft.pages=628-639&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05449-5&rft_dat=%3Cproquest_cross%3E2555984486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555984486&rft_id=info:pmid/&rfr_iscdi=true |