Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques
Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslid...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2021-08, Vol.108 (1), p.1291-1316 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1316 |
---|---|
container_issue | 1 |
container_start_page | 1291 |
container_title | Natural hazards (Dordrecht) |
container_volume | 108 |
creator | Pourghasemi, Hamid Reza Sadhasivam, Nitheshnirmal Amiri, Mahdis Eskandari, Saeedeh Santosh, M. |
description | Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslide exposure regions in Fars Province, comprising an area of approximately 7% of Iran. Initially, an aggregate of 179 historical landslide occurrences was prepared and partitioned. Subsequently, ten landslide conditioning factors (LCFs) were generated. The partial least squares algorithm was utilized to assess the significance of the LCFs with the help of a training dataset which indicated that distance from road had the maximum significance in forecasting landslides, followed by altitude (Al), lithological units, and slope degree. Finally, the LSMs generated using BRT, GLM, MDA, and FDA were validated and compared using cut-off reliant and independent validation measures. The results of the validation metrics showed that GLM and BRT had an AUC of 0.908, while FDA and MDA had AUCs of 0.858 and 0.821, respectively. The results from our case study can be utilized to develop strategies and plans to minimize the loss of human lives and the natural environment. |
doi_str_mv | 10.1007/s11069-021-04732-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555785895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555785895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dce397128174a61ddca97e80d89d562ba879bad149c2e0d58b59330f7b4051c13</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Fz9GXpmmaoyz-gwUvCt5CmqS7WbptzUsPfntbK3jz8t5hfjMDQ8g1g1sGIO-QMSgVhZxRKCTPqTwhKyYkp1AVcEpWoGaJw8c5uUA8ADBW5mpF6q3pHLbB-QxHtH5IoQ5tSF-ZQfSIR9-lbEKyoxmG0O2yEeeLySRP-4amvc9MTJNs96HzWetN7GYiebvvwufo8ZKcNaZFf_X71-T98eFt80y3r08vm_sttZypRJ31XEmWV0wWpmTOWaOkr8BVyokyr00lVW0cK5TNPThR1UJxDo2sCxDMMr4mN0vuEPu5N-lDP8ZuqtS5EEJWolJiovKFsrFHjL7RQwxHE780Az1vqZct9bSl_tlSy8nEFxNOcLfz8S_6H9c3_Kh4hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555785895</pqid></control><display><type>article</type><title>Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pourghasemi, Hamid Reza ; Sadhasivam, Nitheshnirmal ; Amiri, Mahdis ; Eskandari, Saeedeh ; Santosh, M.</creator><creatorcontrib>Pourghasemi, Hamid Reza ; Sadhasivam, Nitheshnirmal ; Amiri, Mahdis ; Eskandari, Saeedeh ; Santosh, M.</creatorcontrib><description>Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslide exposure regions in Fars Province, comprising an area of approximately 7% of Iran. Initially, an aggregate of 179 historical landslide occurrences was prepared and partitioned. Subsequently, ten landslide conditioning factors (LCFs) were generated. The partial least squares algorithm was utilized to assess the significance of the LCFs with the help of a training dataset which indicated that distance from road had the maximum significance in forecasting landslides, followed by altitude (Al), lithological units, and slope degree. Finally, the LSMs generated using BRT, GLM, MDA, and FDA were validated and compared using cut-off reliant and independent validation measures. The results of the validation metrics showed that GLM and BRT had an AUC of 0.908, while FDA and MDA had AUCs of 0.858 and 0.821, respectively. The results from our case study can be utilized to develop strategies and plans to minimize the loss of human lives and the natural environment.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-021-04732-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Civil Engineering ; Discriminant analysis ; Earth and Environmental Science ; Earth Sciences ; Environmental Management ; Generalized linear models ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Landslides ; Landslides & mudslides ; Learning algorithms ; Lithology ; Machine learning ; Natural environment ; Natural Hazards ; Original Paper ; Regression analysis ; Statistical models ; Training</subject><ispartof>Natural hazards (Dordrecht), 2021-08, Vol.108 (1), p.1291-1316</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dce397128174a61ddca97e80d89d562ba879bad149c2e0d58b59330f7b4051c13</citedby><cites>FETCH-LOGICAL-c319t-dce397128174a61ddca97e80d89d562ba879bad149c2e0d58b59330f7b4051c13</cites><orcidid>0000-0003-2328-2998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-021-04732-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-021-04732-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Pourghasemi, Hamid Reza</creatorcontrib><creatorcontrib>Sadhasivam, Nitheshnirmal</creatorcontrib><creatorcontrib>Amiri, Mahdis</creatorcontrib><creatorcontrib>Eskandari, Saeedeh</creatorcontrib><creatorcontrib>Santosh, M.</creatorcontrib><title>Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslide exposure regions in Fars Province, comprising an area of approximately 7% of Iran. Initially, an aggregate of 179 historical landslide occurrences was prepared and partitioned. Subsequently, ten landslide conditioning factors (LCFs) were generated. The partial least squares algorithm was utilized to assess the significance of the LCFs with the help of a training dataset which indicated that distance from road had the maximum significance in forecasting landslides, followed by altitude (Al), lithological units, and slope degree. Finally, the LSMs generated using BRT, GLM, MDA, and FDA were validated and compared using cut-off reliant and independent validation measures. The results of the validation metrics showed that GLM and BRT had an AUC of 0.908, while FDA and MDA had AUCs of 0.858 and 0.821, respectively. The results from our case study can be utilized to develop strategies and plans to minimize the loss of human lives and the natural environment.</description><subject>Algorithms</subject><subject>Civil Engineering</subject><subject>Discriminant analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Management</subject><subject>Generalized linear models</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Learning algorithms</subject><subject>Lithology</subject><subject>Machine learning</subject><subject>Natural environment</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Regression analysis</subject><subject>Statistical models</subject><subject>Training</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAUxIMouK5-AU8Fz9GXpmmaoyz-gwUvCt5CmqS7WbptzUsPfntbK3jz8t5hfjMDQ8g1g1sGIO-QMSgVhZxRKCTPqTwhKyYkp1AVcEpWoGaJw8c5uUA8ADBW5mpF6q3pHLbB-QxHtH5IoQ5tSF-ZQfSIR9-lbEKyoxmG0O2yEeeLySRP-4amvc9MTJNs96HzWetN7GYiebvvwufo8ZKcNaZFf_X71-T98eFt80y3r08vm_sttZypRJ31XEmWV0wWpmTOWaOkr8BVyokyr00lVW0cK5TNPThR1UJxDo2sCxDMMr4mN0vuEPu5N-lDP8ZuqtS5EEJWolJiovKFsrFHjL7RQwxHE780Az1vqZct9bSl_tlSy8nEFxNOcLfz8S_6H9c3_Kh4hA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Pourghasemi, Hamid Reza</creator><creator>Sadhasivam, Nitheshnirmal</creator><creator>Amiri, Mahdis</creator><creator>Eskandari, Saeedeh</creator><creator>Santosh, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2328-2998</orcidid></search><sort><creationdate>20210801</creationdate><title>Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques</title><author>Pourghasemi, Hamid Reza ; Sadhasivam, Nitheshnirmal ; Amiri, Mahdis ; Eskandari, Saeedeh ; Santosh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dce397128174a61ddca97e80d89d562ba879bad149c2e0d58b59330f7b4051c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Civil Engineering</topic><topic>Discriminant analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Management</topic><topic>Generalized linear models</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Learning algorithms</topic><topic>Lithology</topic><topic>Machine learning</topic><topic>Natural environment</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Regression analysis</topic><topic>Statistical models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourghasemi, Hamid Reza</creatorcontrib><creatorcontrib>Sadhasivam, Nitheshnirmal</creatorcontrib><creatorcontrib>Amiri, Mahdis</creatorcontrib><creatorcontrib>Eskandari, Saeedeh</creatorcontrib><creatorcontrib>Santosh, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourghasemi, Hamid Reza</au><au>Sadhasivam, Nitheshnirmal</au><au>Amiri, Mahdis</au><au>Eskandari, Saeedeh</au><au>Santosh, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>108</volume><issue>1</issue><spage>1291</spage><epage>1316</epage><pages>1291-1316</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslide exposure regions in Fars Province, comprising an area of approximately 7% of Iran. Initially, an aggregate of 179 historical landslide occurrences was prepared and partitioned. Subsequently, ten landslide conditioning factors (LCFs) were generated. The partial least squares algorithm was utilized to assess the significance of the LCFs with the help of a training dataset which indicated that distance from road had the maximum significance in forecasting landslides, followed by altitude (Al), lithological units, and slope degree. Finally, the LSMs generated using BRT, GLM, MDA, and FDA were validated and compared using cut-off reliant and independent validation measures. The results of the validation metrics showed that GLM and BRT had an AUC of 0.908, while FDA and MDA had AUCs of 0.858 and 0.821, respectively. The results from our case study can be utilized to develop strategies and plans to minimize the loss of human lives and the natural environment.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-021-04732-7</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2328-2998</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-030X |
ispartof | Natural hazards (Dordrecht), 2021-08, Vol.108 (1), p.1291-1316 |
issn | 0921-030X 1573-0840 |
language | eng |
recordid | cdi_proquest_journals_2555785895 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Civil Engineering Discriminant analysis Earth and Environmental Science Earth Sciences Environmental Management Generalized linear models Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Landslides Landslides & mudslides Learning algorithms Lithology Machine learning Natural environment Natural Hazards Original Paper Regression analysis Statistical models Training |
title | Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landslide%20susceptibility%20assessment%20and%20mapping%20using%20state-of-the%20art%20machine%20learning%20techniques&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Pourghasemi,%20Hamid%20Reza&rft.date=2021-08-01&rft.volume=108&rft.issue=1&rft.spage=1291&rft.epage=1316&rft.pages=1291-1316&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-021-04732-7&rft_dat=%3Cproquest_cross%3E2555785895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555785895&rft_id=info:pmid/&rfr_iscdi=true |