Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques

Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2021-08, Vol.108 (1), p.1291-1316
Hauptverfasser: Pourghasemi, Hamid Reza, Sadhasivam, Nitheshnirmal, Amiri, Mahdis, Eskandari, Saeedeh, Santosh, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1316
container_issue 1
container_start_page 1291
container_title Natural hazards (Dordrecht)
container_volume 108
creator Pourghasemi, Hamid Reza
Sadhasivam, Nitheshnirmal
Amiri, Mahdis
Eskandari, Saeedeh
Santosh, M.
description Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslide exposure regions in Fars Province, comprising an area of approximately 7% of Iran. Initially, an aggregate of 179 historical landslide occurrences was prepared and partitioned. Subsequently, ten landslide conditioning factors (LCFs) were generated. The partial least squares algorithm was utilized to assess the significance of the LCFs with the help of a training dataset which indicated that distance from road had the maximum significance in forecasting landslides, followed by altitude (Al), lithological units, and slope degree. Finally, the LSMs generated using BRT, GLM, MDA, and FDA were validated and compared using cut-off reliant and independent validation measures. The results of the validation metrics showed that GLM and BRT had an AUC of 0.908, while FDA and MDA had AUCs of 0.858 and 0.821, respectively. The results from our case study can be utilized to develop strategies and plans to minimize the loss of human lives and the natural environment.
doi_str_mv 10.1007/s11069-021-04732-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555785895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555785895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dce397128174a61ddca97e80d89d562ba879bad149c2e0d58b59330f7b4051c13</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Fz9GXpmmaoyz-gwUvCt5CmqS7WbptzUsPfntbK3jz8t5hfjMDQ8g1g1sGIO-QMSgVhZxRKCTPqTwhKyYkp1AVcEpWoGaJw8c5uUA8ADBW5mpF6q3pHLbB-QxHtH5IoQ5tSF-ZQfSIR9-lbEKyoxmG0O2yEeeLySRP-4amvc9MTJNs96HzWetN7GYiebvvwufo8ZKcNaZFf_X71-T98eFt80y3r08vm_sttZypRJ31XEmWV0wWpmTOWaOkr8BVyokyr00lVW0cK5TNPThR1UJxDo2sCxDMMr4mN0vuEPu5N-lDP8ZuqtS5EEJWolJiovKFsrFHjL7RQwxHE780Az1vqZct9bSl_tlSy8nEFxNOcLfz8S_6H9c3_Kh4hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555785895</pqid></control><display><type>article</type><title>Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pourghasemi, Hamid Reza ; Sadhasivam, Nitheshnirmal ; Amiri, Mahdis ; Eskandari, Saeedeh ; Santosh, M.</creator><creatorcontrib>Pourghasemi, Hamid Reza ; Sadhasivam, Nitheshnirmal ; Amiri, Mahdis ; Eskandari, Saeedeh ; Santosh, M.</creatorcontrib><description>Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslide exposure regions in Fars Province, comprising an area of approximately 7% of Iran. Initially, an aggregate of 179 historical landslide occurrences was prepared and partitioned. Subsequently, ten landslide conditioning factors (LCFs) were generated. The partial least squares algorithm was utilized to assess the significance of the LCFs with the help of a training dataset which indicated that distance from road had the maximum significance in forecasting landslides, followed by altitude (Al), lithological units, and slope degree. Finally, the LSMs generated using BRT, GLM, MDA, and FDA were validated and compared using cut-off reliant and independent validation measures. The results of the validation metrics showed that GLM and BRT had an AUC of 0.908, while FDA and MDA had AUCs of 0.858 and 0.821, respectively. The results from our case study can be utilized to develop strategies and plans to minimize the loss of human lives and the natural environment.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-021-04732-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Civil Engineering ; Discriminant analysis ; Earth and Environmental Science ; Earth Sciences ; Environmental Management ; Generalized linear models ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Landslides ; Landslides &amp; mudslides ; Learning algorithms ; Lithology ; Machine learning ; Natural environment ; Natural Hazards ; Original Paper ; Regression analysis ; Statistical models ; Training</subject><ispartof>Natural hazards (Dordrecht), 2021-08, Vol.108 (1), p.1291-1316</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dce397128174a61ddca97e80d89d562ba879bad149c2e0d58b59330f7b4051c13</citedby><cites>FETCH-LOGICAL-c319t-dce397128174a61ddca97e80d89d562ba879bad149c2e0d58b59330f7b4051c13</cites><orcidid>0000-0003-2328-2998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-021-04732-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-021-04732-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Pourghasemi, Hamid Reza</creatorcontrib><creatorcontrib>Sadhasivam, Nitheshnirmal</creatorcontrib><creatorcontrib>Amiri, Mahdis</creatorcontrib><creatorcontrib>Eskandari, Saeedeh</creatorcontrib><creatorcontrib>Santosh, M.</creatorcontrib><title>Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslide exposure regions in Fars Province, comprising an area of approximately 7% of Iran. Initially, an aggregate of 179 historical landslide occurrences was prepared and partitioned. Subsequently, ten landslide conditioning factors (LCFs) were generated. The partial least squares algorithm was utilized to assess the significance of the LCFs with the help of a training dataset which indicated that distance from road had the maximum significance in forecasting landslides, followed by altitude (Al), lithological units, and slope degree. Finally, the LSMs generated using BRT, GLM, MDA, and FDA were validated and compared using cut-off reliant and independent validation measures. The results of the validation metrics showed that GLM and BRT had an AUC of 0.908, while FDA and MDA had AUCs of 0.858 and 0.821, respectively. The results from our case study can be utilized to develop strategies and plans to minimize the loss of human lives and the natural environment.</description><subject>Algorithms</subject><subject>Civil Engineering</subject><subject>Discriminant analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Management</subject><subject>Generalized linear models</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Learning algorithms</subject><subject>Lithology</subject><subject>Machine learning</subject><subject>Natural environment</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Regression analysis</subject><subject>Statistical models</subject><subject>Training</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAUxIMouK5-AU8Fz9GXpmmaoyz-gwUvCt5CmqS7WbptzUsPfntbK3jz8t5hfjMDQ8g1g1sGIO-QMSgVhZxRKCTPqTwhKyYkp1AVcEpWoGaJw8c5uUA8ADBW5mpF6q3pHLbB-QxHtH5IoQ5tSF-ZQfSIR9-lbEKyoxmG0O2yEeeLySRP-4amvc9MTJNs96HzWetN7GYiebvvwufo8ZKcNaZFf_X71-T98eFt80y3r08vm_sttZypRJ31XEmWV0wWpmTOWaOkr8BVyokyr00lVW0cK5TNPThR1UJxDo2sCxDMMr4mN0vuEPu5N-lDP8ZuqtS5EEJWolJiovKFsrFHjL7RQwxHE780Az1vqZct9bSl_tlSy8nEFxNOcLfz8S_6H9c3_Kh4hA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Pourghasemi, Hamid Reza</creator><creator>Sadhasivam, Nitheshnirmal</creator><creator>Amiri, Mahdis</creator><creator>Eskandari, Saeedeh</creator><creator>Santosh, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2328-2998</orcidid></search><sort><creationdate>20210801</creationdate><title>Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques</title><author>Pourghasemi, Hamid Reza ; Sadhasivam, Nitheshnirmal ; Amiri, Mahdis ; Eskandari, Saeedeh ; Santosh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dce397128174a61ddca97e80d89d562ba879bad149c2e0d58b59330f7b4051c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Civil Engineering</topic><topic>Discriminant analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Management</topic><topic>Generalized linear models</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Learning algorithms</topic><topic>Lithology</topic><topic>Machine learning</topic><topic>Natural environment</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Regression analysis</topic><topic>Statistical models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourghasemi, Hamid Reza</creatorcontrib><creatorcontrib>Sadhasivam, Nitheshnirmal</creatorcontrib><creatorcontrib>Amiri, Mahdis</creatorcontrib><creatorcontrib>Eskandari, Saeedeh</creatorcontrib><creatorcontrib>Santosh, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourghasemi, Hamid Reza</au><au>Sadhasivam, Nitheshnirmal</au><au>Amiri, Mahdis</au><au>Eskandari, Saeedeh</au><au>Santosh, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>108</volume><issue>1</issue><spage>1291</spage><epage>1316</epage><pages>1291-1316</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Landslides pose a serious risk to human life and the natural environment. Here, we compare machine learning algorithms including the generalized linear model (GLM), mixture discriminant analysis (MDA), boosted regression tree (BRT), and functional discriminant analysis (FDA) to evaluate the landslide exposure regions in Fars Province, comprising an area of approximately 7% of Iran. Initially, an aggregate of 179 historical landslide occurrences was prepared and partitioned. Subsequently, ten landslide conditioning factors (LCFs) were generated. The partial least squares algorithm was utilized to assess the significance of the LCFs with the help of a training dataset which indicated that distance from road had the maximum significance in forecasting landslides, followed by altitude (Al), lithological units, and slope degree. Finally, the LSMs generated using BRT, GLM, MDA, and FDA were validated and compared using cut-off reliant and independent validation measures. The results of the validation metrics showed that GLM and BRT had an AUC of 0.908, while FDA and MDA had AUCs of 0.858 and 0.821, respectively. The results from our case study can be utilized to develop strategies and plans to minimize the loss of human lives and the natural environment.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-021-04732-7</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2328-2998</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2021-08, Vol.108 (1), p.1291-1316
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_journals_2555785895
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Civil Engineering
Discriminant analysis
Earth and Environmental Science
Earth Sciences
Environmental Management
Generalized linear models
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Landslides
Landslides & mudslides
Learning algorithms
Lithology
Machine learning
Natural environment
Natural Hazards
Original Paper
Regression analysis
Statistical models
Training
title Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landslide%20susceptibility%20assessment%20and%20mapping%20using%20state-of-the%20art%20machine%20learning%20techniques&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Pourghasemi,%20Hamid%20Reza&rft.date=2021-08-01&rft.volume=108&rft.issue=1&rft.spage=1291&rft.epage=1316&rft.pages=1291-1316&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-021-04732-7&rft_dat=%3Cproquest_cross%3E2555785895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555785895&rft_id=info:pmid/&rfr_iscdi=true