Schiff-base silver nanocomplexes formation on natural biopolymer coated mesoporous silica contributed to the improved curative effect on infectious microbes
Infectious microbes that spread easily in healthcare facilities remain as the severe threat for the public health, especially among immunocompromised populations. Given the intricate problem of dramatic increase in resistance to common biocides, the development of safe and efficient biocide formulat...
Gespeichert in:
Veröffentlicht in: | Nano research 2021-08, Vol.14 (8), p.2735-2748 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Infectious microbes that spread easily in healthcare facilities remain as the severe threat for the public health, especially among immunocompromised populations. Given the intricate problem of dramatic increase in resistance to common biocides, the development of safe and efficient biocide formulated agents to alleviate drug resistance is highly demanding. In this study, Schiff-base ligands were successfully formed on natural biopolymer of epsilon-poly-L-lysine (ε-PL) decorated aldehyde functionalized mesoporous silica SBA-15 (CHO-SBA-15) for the selective coordination of silver ions, which was affirmed by various physicochemical methods. Besides the identified broad-spectrum antibacterial activities, the as-prepared Schiff-base silver nanocomplex (CHO-SBA-15/ε-PL/Ag, CLA-1) exhibited an improved inhibitory effect on infectious pathogen growth typified by
Escherichia coli
and
Staphylococcus aureus
in comparison with two control silver complexes without Schiff-base conjugates, SBA-15/ε-PL/Ag and CHO-SBA-15/Ag, respectively. In addition, CLA-1 remarkably inhibited the growth of
Mycobacterium tuberculosis
due to the excellent antimicrobial activity of silver species. Significantly, CLA-1 kills
Candida albicans
cells, inhibits biofilm formation, and eliminates preformed biofilms, with no development of resistance during continuous serial passaging. The antifungal activity is connected to disruption of bacterial cell membranes and increased levels of intracellular reactive oxygen species. In mouse models of multidrug-resistant
C. albicans
infection, CLA-1 exhibited efficient
in vivo
fungicidal efficacy superior to two antifungal drugs, amphotericin B and fluconazole. Moreover, CLA-1 treatment induces negligible toxicity against normal tissues with safety. Therefore, this study reveals the pivotal role of the molecular design of Schiff-base silver nanocomplex formation on biopolymer surface-functionalized silica mesopores as a green and efficient nanoplatform to tackle infectious microbes. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-020-3279-6 |