Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor

Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-10, Vol.56 (28), p.16028-16043
Hauptverfasser: Tao, Xue-Yu, Wang, Yao, Ma, Wen-bin, Ye, Shi-Fang, Zhu, Ke-Hu, Guo, Li-Tong, Fan, He-Liang, Liu, Zhang-Sheng, Zhu, Ya-Bo, Wei, Xian-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16043
container_issue 28
container_start_page 16028
container_title Journal of materials science
container_volume 56
creator Tao, Xue-Yu
Wang, Yao
Ma, Wen-bin
Ye, Shi-Fang
Zhu, Ke-Hu
Guo, Li-Tong
Fan, He-Liang
Liu, Zhang-Sheng
Zhu, Ya-Bo
Wei, Xian-Yong
description Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g −1 at 0.5 A g −1 , 1267 mF cm −2 at 1 mA cm −2 ) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H 2 SO 4 hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm −2 at 1 mA cm −2 and energy density of 44 µWh cm −2 (22 Wh kg −1 ) at 250 µW cm −2 (125 W kg −1 ). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices. Graphical abstract
doi_str_mv 10.1007/s10853-021-06304-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2555779183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669985600</galeid><sourcerecordid>A669985600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-dabe574ed5d35ed07606fa5c97d1e48af697b916cf045dd754428553e7f873ec3</originalsourceid><addsrcrecordid>eNp9kU1rHSEUhqW00Ju0f6Crga6y8Oaoo84sw6VJA4FAP9Zi9DiZMHecqBd6_329mZaSTTkLD_I8-sJLyCcGWwagLzODTgoKnFFQAloq3pANk1rQtgPxlmwAOKe8Vew9Ocv5CQCk5mxD_C4ucTruMTWPR5_igFNjc5NxCjQXO_txHhqc0JUUPTYhVm4cHpsFU933dnbY2Gmif-WTVLDJhwo4u1g3lpg-kHfBThk__jnPyc_rLz92X-nd_c3t7uqOOtHzQr19QKlb9NILiR60AhWsdL32DNvOBtXrh54pF6CV3mvZtryTUqAOnRboxDn5vL67pPh8wFzMUzykuX5puJRS6551olLblRrshGacQyzJujoe96OLM4ax3l8p1fedVABVuHglVKbgrzLYQ87m9vu31yxfWZdizgmDWdK4t-loGJhTVWatytSqzEtV5pRIrFKu8Dxg-pf7P9Zv6eiXMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555779183</pqid></control><display><type>article</type><title>Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tao, Xue-Yu ; Wang, Yao ; Ma, Wen-bin ; Ye, Shi-Fang ; Zhu, Ke-Hu ; Guo, Li-Tong ; Fan, He-Liang ; Liu, Zhang-Sheng ; Zhu, Ya-Bo ; Wei, Xian-Yong</creator><creatorcontrib>Tao, Xue-Yu ; Wang, Yao ; Ma, Wen-bin ; Ye, Shi-Fang ; Zhu, Ke-Hu ; Guo, Li-Tong ; Fan, He-Liang ; Liu, Zhang-Sheng ; Zhu, Ya-Bo ; Wei, Xian-Yong</creatorcontrib><description>Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g −1 at 0.5 A g −1 , 1267 mF cm −2 at 1 mA cm −2 ) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H 2 SO 4 hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm −2 at 1 mA cm −2 and energy density of 44 µWh cm −2 (22 Wh kg −1 ) at 250 µW cm −2 (125 W kg −1 ). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06304-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aniline ; Aqueous solutions ; Capacitance ; Capacitors ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Conducting polymers ; Copolymers ; Crystallography and Scattering Methods ; Electrode materials ; Electrodes ; Electrolytes ; Energy Materials ; Flux density ; Hydrogels ; Materials Science ; Phosphates ; Phytic acid ; Polymer Sciences ; Polymerization ; Polyvinyl alcohol ; Solid Mechanics ; Sulfuric acid ; Supercapacitors ; Wearable technology</subject><ispartof>Journal of materials science, 2021-10, Vol.56 (28), p.16028-16043</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-dabe574ed5d35ed07606fa5c97d1e48af697b916cf045dd754428553e7f873ec3</citedby><cites>FETCH-LOGICAL-c392t-dabe574ed5d35ed07606fa5c97d1e48af697b916cf045dd754428553e7f873ec3</cites><orcidid>0000-0003-2413-3740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06304-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06304-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Tao, Xue-Yu</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Ma, Wen-bin</creatorcontrib><creatorcontrib>Ye, Shi-Fang</creatorcontrib><creatorcontrib>Zhu, Ke-Hu</creatorcontrib><creatorcontrib>Guo, Li-Tong</creatorcontrib><creatorcontrib>Fan, He-Liang</creatorcontrib><creatorcontrib>Liu, Zhang-Sheng</creatorcontrib><creatorcontrib>Zhu, Ya-Bo</creatorcontrib><creatorcontrib>Wei, Xian-Yong</creatorcontrib><title>Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g −1 at 0.5 A g −1 , 1267 mF cm −2 at 1 mA cm −2 ) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H 2 SO 4 hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm −2 at 1 mA cm −2 and energy density of 44 µWh cm −2 (22 Wh kg −1 ) at 250 µW cm −2 (125 W kg −1 ). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices. Graphical abstract</description><subject>Aniline</subject><subject>Aqueous solutions</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Conducting polymers</subject><subject>Copolymers</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy Materials</subject><subject>Flux density</subject><subject>Hydrogels</subject><subject>Materials Science</subject><subject>Phosphates</subject><subject>Phytic acid</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polyvinyl alcohol</subject><subject>Solid Mechanics</subject><subject>Sulfuric acid</subject><subject>Supercapacitors</subject><subject>Wearable technology</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1rHSEUhqW00Ju0f6Crga6y8Oaoo84sw6VJA4FAP9Zi9DiZMHecqBd6_329mZaSTTkLD_I8-sJLyCcGWwagLzODTgoKnFFQAloq3pANk1rQtgPxlmwAOKe8Vew9Ocv5CQCk5mxD_C4ucTruMTWPR5_igFNjc5NxCjQXO_txHhqc0JUUPTYhVm4cHpsFU933dnbY2Gmif-WTVLDJhwo4u1g3lpg-kHfBThk__jnPyc_rLz92X-nd_c3t7uqOOtHzQr19QKlb9NILiR60AhWsdL32DNvOBtXrh54pF6CV3mvZtryTUqAOnRboxDn5vL67pPh8wFzMUzykuX5puJRS6551olLblRrshGacQyzJujoe96OLM4ax3l8p1fedVABVuHglVKbgrzLYQ87m9vu31yxfWZdizgmDWdK4t-loGJhTVWatytSqzEtV5pRIrFKu8Dxg-pf7P9Zv6eiXMg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Tao, Xue-Yu</creator><creator>Wang, Yao</creator><creator>Ma, Wen-bin</creator><creator>Ye, Shi-Fang</creator><creator>Zhu, Ke-Hu</creator><creator>Guo, Li-Tong</creator><creator>Fan, He-Liang</creator><creator>Liu, Zhang-Sheng</creator><creator>Zhu, Ya-Bo</creator><creator>Wei, Xian-Yong</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2413-3740</orcidid></search><sort><creationdate>20211001</creationdate><title>Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor</title><author>Tao, Xue-Yu ; Wang, Yao ; Ma, Wen-bin ; Ye, Shi-Fang ; Zhu, Ke-Hu ; Guo, Li-Tong ; Fan, He-Liang ; Liu, Zhang-Sheng ; Zhu, Ya-Bo ; Wei, Xian-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-dabe574ed5d35ed07606fa5c97d1e48af697b916cf045dd754428553e7f873ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aniline</topic><topic>Aqueous solutions</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Conducting polymers</topic><topic>Copolymers</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy Materials</topic><topic>Flux density</topic><topic>Hydrogels</topic><topic>Materials Science</topic><topic>Phosphates</topic><topic>Phytic acid</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polyvinyl alcohol</topic><topic>Solid Mechanics</topic><topic>Sulfuric acid</topic><topic>Supercapacitors</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Xue-Yu</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Ma, Wen-bin</creatorcontrib><creatorcontrib>Ye, Shi-Fang</creatorcontrib><creatorcontrib>Zhu, Ke-Hu</creatorcontrib><creatorcontrib>Guo, Li-Tong</creatorcontrib><creatorcontrib>Fan, He-Liang</creatorcontrib><creatorcontrib>Liu, Zhang-Sheng</creatorcontrib><creatorcontrib>Zhu, Ya-Bo</creatorcontrib><creatorcontrib>Wei, Xian-Yong</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Xue-Yu</au><au>Wang, Yao</au><au>Ma, Wen-bin</au><au>Ye, Shi-Fang</au><au>Zhu, Ke-Hu</au><au>Guo, Li-Tong</au><au>Fan, He-Liang</au><au>Liu, Zhang-Sheng</au><au>Zhu, Ya-Bo</au><au>Wei, Xian-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>56</volume><issue>28</issue><spage>16028</spage><epage>16043</epage><pages>16028-16043</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g −1 at 0.5 A g −1 , 1267 mF cm −2 at 1 mA cm −2 ) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H 2 SO 4 hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm −2 at 1 mA cm −2 and energy density of 44 µWh cm −2 (22 Wh kg −1 ) at 250 µW cm −2 (125 W kg −1 ). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06304-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2413-3740</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-10, Vol.56 (28), p.16028-16043
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2555779183
source SpringerLink Journals - AutoHoldings
subjects Aniline
Aqueous solutions
Capacitance
Capacitors
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Conducting polymers
Copolymers
Crystallography and Scattering Methods
Electrode materials
Electrodes
Electrolytes
Energy Materials
Flux density
Hydrogels
Materials Science
Phosphates
Phytic acid
Polymer Sciences
Polymerization
Polyvinyl alcohol
Solid Mechanics
Sulfuric acid
Supercapacitors
Wearable technology
title Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copolymer%20hydrogel%20as%20self-standing%20electrode%20for%20high%20performance%20all-hydrogel-state%20supercapacitor&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tao,%20Xue-Yu&rft.date=2021-10-01&rft.volume=56&rft.issue=28&rft.spage=16028&rft.epage=16043&rft.pages=16028-16043&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06304-3&rft_dat=%3Cgale_proqu%3EA669985600%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555779183&rft_id=info:pmid/&rft_galeid=A669985600&rfr_iscdi=true