Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor
Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The h...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-10, Vol.56 (28), p.16028-16043 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16043 |
---|---|
container_issue | 28 |
container_start_page | 16028 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Tao, Xue-Yu Wang, Yao Ma, Wen-bin Ye, Shi-Fang Zhu, Ke-Hu Guo, Li-Tong Fan, He-Liang Liu, Zhang-Sheng Zhu, Ya-Bo Wei, Xian-Yong |
description | Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g
−1
at 0.5 A g
−1
, 1267 mF cm
−2
at 1 mA cm
−2
) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H
2
SO
4
hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm
−2
at 1 mA cm
−2
and energy density of 44 µWh cm
−2
(22 Wh kg
−1
) at 250 µW cm
−2
(125 W kg
−1
). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices.
Graphical abstract |
doi_str_mv | 10.1007/s10853-021-06304-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2555779183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669985600</galeid><sourcerecordid>A669985600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-dabe574ed5d35ed07606fa5c97d1e48af697b916cf045dd754428553e7f873ec3</originalsourceid><addsrcrecordid>eNp9kU1rHSEUhqW00Ju0f6Crga6y8Oaoo84sw6VJA4FAP9Zi9DiZMHecqBd6_329mZaSTTkLD_I8-sJLyCcGWwagLzODTgoKnFFQAloq3pANk1rQtgPxlmwAOKe8Vew9Ocv5CQCk5mxD_C4ucTruMTWPR5_igFNjc5NxCjQXO_txHhqc0JUUPTYhVm4cHpsFU933dnbY2Gmif-WTVLDJhwo4u1g3lpg-kHfBThk__jnPyc_rLz92X-nd_c3t7uqOOtHzQr19QKlb9NILiR60AhWsdL32DNvOBtXrh54pF6CV3mvZtryTUqAOnRboxDn5vL67pPh8wFzMUzykuX5puJRS6551olLblRrshGacQyzJujoe96OLM4ax3l8p1fedVABVuHglVKbgrzLYQ87m9vu31yxfWZdizgmDWdK4t-loGJhTVWatytSqzEtV5pRIrFKu8Dxg-pf7P9Zv6eiXMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555779183</pqid></control><display><type>article</type><title>Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tao, Xue-Yu ; Wang, Yao ; Ma, Wen-bin ; Ye, Shi-Fang ; Zhu, Ke-Hu ; Guo, Li-Tong ; Fan, He-Liang ; Liu, Zhang-Sheng ; Zhu, Ya-Bo ; Wei, Xian-Yong</creator><creatorcontrib>Tao, Xue-Yu ; Wang, Yao ; Ma, Wen-bin ; Ye, Shi-Fang ; Zhu, Ke-Hu ; Guo, Li-Tong ; Fan, He-Liang ; Liu, Zhang-Sheng ; Zhu, Ya-Bo ; Wei, Xian-Yong</creatorcontrib><description>Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g
−1
at 0.5 A g
−1
, 1267 mF cm
−2
at 1 mA cm
−2
) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H
2
SO
4
hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm
−2
at 1 mA cm
−2
and energy density of 44 µWh cm
−2
(22 Wh kg
−1
) at 250 µW cm
−2
(125 W kg
−1
). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06304-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aniline ; Aqueous solutions ; Capacitance ; Capacitors ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Conducting polymers ; Copolymers ; Crystallography and Scattering Methods ; Electrode materials ; Electrodes ; Electrolytes ; Energy Materials ; Flux density ; Hydrogels ; Materials Science ; Phosphates ; Phytic acid ; Polymer Sciences ; Polymerization ; Polyvinyl alcohol ; Solid Mechanics ; Sulfuric acid ; Supercapacitors ; Wearable technology</subject><ispartof>Journal of materials science, 2021-10, Vol.56 (28), p.16028-16043</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-dabe574ed5d35ed07606fa5c97d1e48af697b916cf045dd754428553e7f873ec3</citedby><cites>FETCH-LOGICAL-c392t-dabe574ed5d35ed07606fa5c97d1e48af697b916cf045dd754428553e7f873ec3</cites><orcidid>0000-0003-2413-3740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06304-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06304-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Tao, Xue-Yu</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Ma, Wen-bin</creatorcontrib><creatorcontrib>Ye, Shi-Fang</creatorcontrib><creatorcontrib>Zhu, Ke-Hu</creatorcontrib><creatorcontrib>Guo, Li-Tong</creatorcontrib><creatorcontrib>Fan, He-Liang</creatorcontrib><creatorcontrib>Liu, Zhang-Sheng</creatorcontrib><creatorcontrib>Zhu, Ya-Bo</creatorcontrib><creatorcontrib>Wei, Xian-Yong</creatorcontrib><title>Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g
−1
at 0.5 A g
−1
, 1267 mF cm
−2
at 1 mA cm
−2
) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H
2
SO
4
hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm
−2
at 1 mA cm
−2
and energy density of 44 µWh cm
−2
(22 Wh kg
−1
) at 250 µW cm
−2
(125 W kg
−1
). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices.
Graphical abstract</description><subject>Aniline</subject><subject>Aqueous solutions</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Conducting polymers</subject><subject>Copolymers</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy Materials</subject><subject>Flux density</subject><subject>Hydrogels</subject><subject>Materials Science</subject><subject>Phosphates</subject><subject>Phytic acid</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polyvinyl alcohol</subject><subject>Solid Mechanics</subject><subject>Sulfuric acid</subject><subject>Supercapacitors</subject><subject>Wearable technology</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1rHSEUhqW00Ju0f6Crga6y8Oaoo84sw6VJA4FAP9Zi9DiZMHecqBd6_329mZaSTTkLD_I8-sJLyCcGWwagLzODTgoKnFFQAloq3pANk1rQtgPxlmwAOKe8Vew9Ocv5CQCk5mxD_C4ucTruMTWPR5_igFNjc5NxCjQXO_txHhqc0JUUPTYhVm4cHpsFU933dnbY2Gmif-WTVLDJhwo4u1g3lpg-kHfBThk__jnPyc_rLz92X-nd_c3t7uqOOtHzQr19QKlb9NILiR60AhWsdL32DNvOBtXrh54pF6CV3mvZtryTUqAOnRboxDn5vL67pPh8wFzMUzykuX5puJRS6551olLblRrshGacQyzJujoe96OLM4ax3l8p1fedVABVuHglVKbgrzLYQ87m9vu31yxfWZdizgmDWdK4t-loGJhTVWatytSqzEtV5pRIrFKu8Dxg-pf7P9Zv6eiXMg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Tao, Xue-Yu</creator><creator>Wang, Yao</creator><creator>Ma, Wen-bin</creator><creator>Ye, Shi-Fang</creator><creator>Zhu, Ke-Hu</creator><creator>Guo, Li-Tong</creator><creator>Fan, He-Liang</creator><creator>Liu, Zhang-Sheng</creator><creator>Zhu, Ya-Bo</creator><creator>Wei, Xian-Yong</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2413-3740</orcidid></search><sort><creationdate>20211001</creationdate><title>Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor</title><author>Tao, Xue-Yu ; Wang, Yao ; Ma, Wen-bin ; Ye, Shi-Fang ; Zhu, Ke-Hu ; Guo, Li-Tong ; Fan, He-Liang ; Liu, Zhang-Sheng ; Zhu, Ya-Bo ; Wei, Xian-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-dabe574ed5d35ed07606fa5c97d1e48af697b916cf045dd754428553e7f873ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aniline</topic><topic>Aqueous solutions</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Conducting polymers</topic><topic>Copolymers</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy Materials</topic><topic>Flux density</topic><topic>Hydrogels</topic><topic>Materials Science</topic><topic>Phosphates</topic><topic>Phytic acid</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polyvinyl alcohol</topic><topic>Solid Mechanics</topic><topic>Sulfuric acid</topic><topic>Supercapacitors</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Xue-Yu</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Ma, Wen-bin</creatorcontrib><creatorcontrib>Ye, Shi-Fang</creatorcontrib><creatorcontrib>Zhu, Ke-Hu</creatorcontrib><creatorcontrib>Guo, Li-Tong</creatorcontrib><creatorcontrib>Fan, He-Liang</creatorcontrib><creatorcontrib>Liu, Zhang-Sheng</creatorcontrib><creatorcontrib>Zhu, Ya-Bo</creatorcontrib><creatorcontrib>Wei, Xian-Yong</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Xue-Yu</au><au>Wang, Yao</au><au>Ma, Wen-bin</au><au>Ye, Shi-Fang</au><au>Zhu, Ke-Hu</au><au>Guo, Li-Tong</au><au>Fan, He-Liang</au><au>Liu, Zhang-Sheng</au><au>Zhu, Ya-Bo</au><au>Wei, Xian-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>56</volume><issue>28</issue><spage>16028</spage><epage>16043</epage><pages>16028-16043</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g
−1
at 0.5 A g
−1
, 1267 mF cm
−2
at 1 mA cm
−2
) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H
2
SO
4
hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm
−2
at 1 mA cm
−2
and energy density of 44 µWh cm
−2
(22 Wh kg
−1
) at 250 µW cm
−2
(125 W kg
−1
). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06304-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2413-3740</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-10, Vol.56 (28), p.16028-16043 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2555779183 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aniline Aqueous solutions Capacitance Capacitors Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Conducting polymers Copolymers Crystallography and Scattering Methods Electrode materials Electrodes Electrolytes Energy Materials Flux density Hydrogels Materials Science Phosphates Phytic acid Polymer Sciences Polymerization Polyvinyl alcohol Solid Mechanics Sulfuric acid Supercapacitors Wearable technology |
title | Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copolymer%20hydrogel%20as%20self-standing%20electrode%20for%20high%20performance%20all-hydrogel-state%20supercapacitor&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tao,%20Xue-Yu&rft.date=2021-10-01&rft.volume=56&rft.issue=28&rft.spage=16028&rft.epage=16043&rft.pages=16028-16043&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06304-3&rft_dat=%3Cgale_proqu%3EA669985600%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555779183&rft_id=info:pmid/&rft_galeid=A669985600&rfr_iscdi=true |