Effects of lithium source and electrochemical window on the properties of Li1.2Fe0.16Ni0.24Mn0.4O2 cathode material prepared by oxalate co-precipitation method

Due to the limitation of the theoretical specific capacity of traditional cathode materials, the key to improve the energy density of lithium-ion batteries (LIBs) is to develop high-performance cathode materials. As a promising cathode material for LIBs, Fe-containing lithium-rich manganese-based ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2021-02, Vol.23 (2), Article 43
Hauptverfasser: Zhao, Taolin, Shen, Jiangang, Si, Huayan, Zhang, Yuxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 23
creator Zhao, Taolin
Shen, Jiangang
Si, Huayan
Zhang, Yuxia
description Due to the limitation of the theoretical specific capacity of traditional cathode materials, the key to improve the energy density of lithium-ion batteries (LIBs) is to develop high-performance cathode materials. As a promising cathode material for LIBs, Fe-containing lithium-rich manganese-based materials possess high specific capacity and high working voltage. At present, the research on the synthesis and electrochemical reaction mechanism of this kind of material is still imperfect. Here, a facile oxalate co-precipitation method is employed to prepare Li 1.2 Fe 0.16 Ni 0.24 Mn 0.4 O 2 using different lithium sources. The effects of lithium source and electrochemical window on the specific capacity and cyclic stability of the materials are also systematically investigated. When applied in LIBs, the prepared material using LiNO 3 as lithium source presents a micro-nano hierarchical structure and exhibits a high first discharge specific capacity of 337.7 mAh g −1 and a high reversible capacity of 208.4 mAh g −1 after 60 cycles at 0.1 C in the voltage range of 1.5 − 4.8 V. The results of this study can provide more selectivity for the lithium source of the electrode material during the preparation process, and select a suitable voltage test range for cathode materials to achieve specific properties. The outstanding performances make this oxalate co-precipitation process a prospective method to prepare high-capacity cathode materials for LIBs. Graphical abstract
doi_str_mv 10.1007/s11051-021-05159-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555778999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555778999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a339c536f167d91464e8461fd3c823a87438b79c72841adf29710d0ac5dff2dc3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVsIJELgB1hZYt2D348lihISaZJsgsTOcuwy46i73dgehXwNv4ozg5RdFpat8j23yr7D8JngDcFYfa2EYEFGTPsSRJhRvxlOiFB01Eb-fNvPTOsRK8nfDx9qfcCYSGroyfD3PEbwraIc0ZTaLu1nVPO-eEBuCQimflmy38GcvJvQY1pCfkR5QW0HaC15hdISHPBtIht6AX0ieZPwhvLrBW_4LUXetV0OgGbXoKTushZYXYGA7p9Q_uOmXkc-j73s05qaa6k3mOGZ-ji8i26q8On_fjr8uDi_O7sct7ffr86-bUfPtGyjY8x4wWQkUgVDuOSguSQxMK8pc1pxpu-V8YpqTlyI1CiCA3ZehBhp8Ox0-HL07W_6vYfa7EP_haW3tFQIoZQ2xryq4lpqzYURXUWPKl9yrQWiXUuaXXmyBNvnuOwxLtvjsoe4rO4QO0K1i5dfUF6sX6H-AWuLl7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486884595</pqid></control><display><type>article</type><title>Effects of lithium source and electrochemical window on the properties of Li1.2Fe0.16Ni0.24Mn0.4O2 cathode material prepared by oxalate co-precipitation method</title><source>SpringerNature Journals</source><creator>Zhao, Taolin ; Shen, Jiangang ; Si, Huayan ; Zhang, Yuxia</creator><creatorcontrib>Zhao, Taolin ; Shen, Jiangang ; Si, Huayan ; Zhang, Yuxia</creatorcontrib><description>Due to the limitation of the theoretical specific capacity of traditional cathode materials, the key to improve the energy density of lithium-ion batteries (LIBs) is to develop high-performance cathode materials. As a promising cathode material for LIBs, Fe-containing lithium-rich manganese-based materials possess high specific capacity and high working voltage. At present, the research on the synthesis and electrochemical reaction mechanism of this kind of material is still imperfect. Here, a facile oxalate co-precipitation method is employed to prepare Li 1.2 Fe 0.16 Ni 0.24 Mn 0.4 O 2 using different lithium sources. The effects of lithium source and electrochemical window on the specific capacity and cyclic stability of the materials are also systematically investigated. When applied in LIBs, the prepared material using LiNO 3 as lithium source presents a micro-nano hierarchical structure and exhibits a high first discharge specific capacity of 337.7 mAh g −1 and a high reversible capacity of 208.4 mAh g −1 after 60 cycles at 0.1 C in the voltage range of 1.5 − 4.8 V. The results of this study can provide more selectivity for the lithium source of the electrode material during the preparation process, and select a suitable voltage test range for cathode materials to achieve specific properties. The outstanding performances make this oxalate co-precipitation process a prospective method to prepare high-capacity cathode materials for LIBs. Graphical abstract</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-021-05159-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Cathodes ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemical synthesis ; Chemistry and Materials Science ; Coprecipitation ; Electric potential ; Electrochemistry ; Electrode materials ; Flux density ; Inorganic Chemistry ; Iron ; Lasers ; Lithium ; Lithium-ion batteries ; Manganese ; Materials Science ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Oxalic acid ; Photonics ; Physical Chemistry ; Reaction mechanisms ; Rechargeable batteries ; Research Paper ; Selectivity ; Specific capacity ; Structural hierarchy ; Voltage</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2021-02, Vol.23 (2), Article 43</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a339c536f167d91464e8461fd3c823a87438b79c72841adf29710d0ac5dff2dc3</citedby><cites>FETCH-LOGICAL-c386t-a339c536f167d91464e8461fd3c823a87438b79c72841adf29710d0ac5dff2dc3</cites><orcidid>0000-0003-0799-3386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-021-05159-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-021-05159-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Taolin</creatorcontrib><creatorcontrib>Shen, Jiangang</creatorcontrib><creatorcontrib>Si, Huayan</creatorcontrib><creatorcontrib>Zhang, Yuxia</creatorcontrib><title>Effects of lithium source and electrochemical window on the properties of Li1.2Fe0.16Ni0.24Mn0.4O2 cathode material prepared by oxalate co-precipitation method</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Due to the limitation of the theoretical specific capacity of traditional cathode materials, the key to improve the energy density of lithium-ion batteries (LIBs) is to develop high-performance cathode materials. As a promising cathode material for LIBs, Fe-containing lithium-rich manganese-based materials possess high specific capacity and high working voltage. At present, the research on the synthesis and electrochemical reaction mechanism of this kind of material is still imperfect. Here, a facile oxalate co-precipitation method is employed to prepare Li 1.2 Fe 0.16 Ni 0.24 Mn 0.4 O 2 using different lithium sources. The effects of lithium source and electrochemical window on the specific capacity and cyclic stability of the materials are also systematically investigated. When applied in LIBs, the prepared material using LiNO 3 as lithium source presents a micro-nano hierarchical structure and exhibits a high first discharge specific capacity of 337.7 mAh g −1 and a high reversible capacity of 208.4 mAh g −1 after 60 cycles at 0.1 C in the voltage range of 1.5 − 4.8 V. The results of this study can provide more selectivity for the lithium source of the electrode material during the preparation process, and select a suitable voltage test range for cathode materials to achieve specific properties. The outstanding performances make this oxalate co-precipitation process a prospective method to prepare high-capacity cathode materials for LIBs. Graphical abstract</description><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Coprecipitation</subject><subject>Electric potential</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Flux density</subject><subject>Inorganic Chemistry</subject><subject>Iron</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Oxalic acid</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Research Paper</subject><subject>Selectivity</subject><subject>Specific capacity</subject><subject>Structural hierarchy</subject><subject>Voltage</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctuFDEQRVsIJELgB1hZYt2D348lihISaZJsgsTOcuwy46i73dgehXwNv4ozg5RdFpat8j23yr7D8JngDcFYfa2EYEFGTPsSRJhRvxlOiFB01Eb-fNvPTOsRK8nfDx9qfcCYSGroyfD3PEbwraIc0ZTaLu1nVPO-eEBuCQimflmy38GcvJvQY1pCfkR5QW0HaC15hdISHPBtIht6AX0ieZPwhvLrBW_4LUXetV0OgGbXoKTushZYXYGA7p9Q_uOmXkc-j73s05qaa6k3mOGZ-ji8i26q8On_fjr8uDi_O7sct7ffr86-bUfPtGyjY8x4wWQkUgVDuOSguSQxMK8pc1pxpu-V8YpqTlyI1CiCA3ZehBhp8Ox0-HL07W_6vYfa7EP_haW3tFQIoZQ2xryq4lpqzYURXUWPKl9yrQWiXUuaXXmyBNvnuOwxLtvjsoe4rO4QO0K1i5dfUF6sX6H-AWuLl7w</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhao, Taolin</creator><creator>Shen, Jiangang</creator><creator>Si, Huayan</creator><creator>Zhang, Yuxia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0799-3386</orcidid></search><sort><creationdate>20210201</creationdate><title>Effects of lithium source and electrochemical window on the properties of Li1.2Fe0.16Ni0.24Mn0.4O2 cathode material prepared by oxalate co-precipitation method</title><author>Zhao, Taolin ; Shen, Jiangang ; Si, Huayan ; Zhang, Yuxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a339c536f167d91464e8461fd3c823a87438b79c72841adf29710d0ac5dff2dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Coprecipitation</topic><topic>Electric potential</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Flux density</topic><topic>Inorganic Chemistry</topic><topic>Iron</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Oxalic acid</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Research Paper</topic><topic>Selectivity</topic><topic>Specific capacity</topic><topic>Structural hierarchy</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Taolin</creatorcontrib><creatorcontrib>Shen, Jiangang</creatorcontrib><creatorcontrib>Si, Huayan</creatorcontrib><creatorcontrib>Zhang, Yuxia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Taolin</au><au>Shen, Jiangang</au><au>Si, Huayan</au><au>Zhang, Yuxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of lithium source and electrochemical window on the properties of Li1.2Fe0.16Ni0.24Mn0.4O2 cathode material prepared by oxalate co-precipitation method</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>23</volume><issue>2</issue><artnum>43</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Due to the limitation of the theoretical specific capacity of traditional cathode materials, the key to improve the energy density of lithium-ion batteries (LIBs) is to develop high-performance cathode materials. As a promising cathode material for LIBs, Fe-containing lithium-rich manganese-based materials possess high specific capacity and high working voltage. At present, the research on the synthesis and electrochemical reaction mechanism of this kind of material is still imperfect. Here, a facile oxalate co-precipitation method is employed to prepare Li 1.2 Fe 0.16 Ni 0.24 Mn 0.4 O 2 using different lithium sources. The effects of lithium source and electrochemical window on the specific capacity and cyclic stability of the materials are also systematically investigated. When applied in LIBs, the prepared material using LiNO 3 as lithium source presents a micro-nano hierarchical structure and exhibits a high first discharge specific capacity of 337.7 mAh g −1 and a high reversible capacity of 208.4 mAh g −1 after 60 cycles at 0.1 C in the voltage range of 1.5 − 4.8 V. The results of this study can provide more selectivity for the lithium source of the electrode material during the preparation process, and select a suitable voltage test range for cathode materials to achieve specific properties. The outstanding performances make this oxalate co-precipitation process a prospective method to prepare high-capacity cathode materials for LIBs. Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-021-05159-8</doi><orcidid>https://orcid.org/0000-0003-0799-3386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2021-02, Vol.23 (2), Article 43
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_2555778999
source SpringerNature Journals
subjects Cathodes
Characterization and Evaluation of Materials
Chemical precipitation
Chemical synthesis
Chemistry and Materials Science
Coprecipitation
Electric potential
Electrochemistry
Electrode materials
Flux density
Inorganic Chemistry
Iron
Lasers
Lithium
Lithium-ion batteries
Manganese
Materials Science
Nanoparticles
Nanotechnology
Optical Devices
Optics
Oxalic acid
Photonics
Physical Chemistry
Reaction mechanisms
Rechargeable batteries
Research Paper
Selectivity
Specific capacity
Structural hierarchy
Voltage
title Effects of lithium source and electrochemical window on the properties of Li1.2Fe0.16Ni0.24Mn0.4O2 cathode material prepared by oxalate co-precipitation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20lithium%20source%20and%20electrochemical%20window%20on%20the%20properties%20of%20Li1.2Fe0.16Ni0.24Mn0.4O2%20cathode%20material%20prepared%20by%20oxalate%20co-precipitation%20method&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Zhao,%20Taolin&rft.date=2021-02-01&rft.volume=23&rft.issue=2&rft.artnum=43&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-021-05159-8&rft_dat=%3Cproquest_cross%3E2555778999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486884595&rft_id=info:pmid/&rfr_iscdi=true