Optical Compressive Encryption via Deep Learning
The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2021-08, Vol.13 (4), p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 13 |
creator | Qin, Yi Wan, Yuhong Wan, Shujia Liu, Chao Liu, Wei |
description | The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For compression, the ciphertext is first resized to a relatively small dimension by bilinear interpolation and thereafter condensed by the JPEG2000 standard. For decompression, a well-trained deep neural network (DNN) can be employed to perfectly recover the original ciphertext, in spite of the severe information loss suffered by the compressed file. In contrast with JPEG2000 and JPEG, our proposal can achieve a far smaller size of the compressed file (SCF) while offering comparable decompression quality. In addition, the SCF can be further reduced by compromising the quality of the recovered plaintext. It is also shown that the compression procedure can provide an additional security level, and this may offer new insight into the compressive encryption in optical cryptosystems. Both simulation and experimental results are presented to demonstrate the proposal. |
doi_str_mv | 10.1109/JPHOT.2021.3095712 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555725427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9478270</ieee_id><doaj_id>oai_doaj_org_article_845b60434b55462a8a9a287a4ac506ef</doaj_id><sourcerecordid>2555725427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-c90293735cf5416a6438ecdac92422192f55a6f7e48a7e40fb1bfa33048a169b3</originalsourceid><addsrcrecordid>eNpNUMtuwjAQtKpWKqX9gfYSqWfo-rFOfKzoAyokeqBna2McFARx6gASf99AEOplH6Od2dEw9shhyDmYl6_v8Ww-FCD4UILBlIsr1uNGyQFoxOt_8y27a5oVgDYcTY_BrN6WjtbJKGzq6Jum3PvkvXLx0OKhSvYlJW_e18nUU6zKannPbgpaN_7h3Pvs5-N9PhoPprPPyeh1OnAKcDtwBoSRqURXoOKatJKZdwtyRighuBEFIuki9SqjtkCR87wgKaHduTa57LNJp7sItLJ1LDcUDzZQaU9AiEtLsbW-9jZTmGtQUuWISgvKyJDIUlLkELQvWq3nTquO4Xfnm61dhV2sWvtWIGIqUIm0vRLdlYuhaaIvLl852GPK9pSyPaZszym3pKeOVHrvLwSj0kykIP8AQk12Lw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555725427</pqid></control><display><type>article</type><title>Optical Compressive Encryption via Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qin, Yi ; Wan, Yuhong ; Wan, Shujia ; Liu, Chao ; Liu, Wei</creator><creatorcontrib>Qin, Yi ; Wan, Yuhong ; Wan, Shujia ; Liu, Chao ; Liu, Wei</creatorcontrib><description>The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For compression, the ciphertext is first resized to a relatively small dimension by bilinear interpolation and thereafter condensed by the JPEG2000 standard. For decompression, a well-trained deep neural network (DNN) can be employed to perfectly recover the original ciphertext, in spite of the severe information loss suffered by the compressed file. In contrast with JPEG2000 and JPEG, our proposal can achieve a far smaller size of the compressed file (SCF) while offering comparable decompression quality. In addition, the SCF can be further reduced by compromising the quality of the recovered plaintext. It is also shown that the compression procedure can provide an additional security level, and this may offer new insight into the compressive encryption in optical cryptosystems. Both simulation and experimental results are presented to demonstrate the proposal.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2021.3095712</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; ciphertext compression ; Computer systems ; Cryptography ; Data transfer (computers) ; Deep learning ; Encryption ; Holographic optical components ; Holography ; Image coding ; Image compression ; Interpolation ; Machine learning ; Multiplexing ; Optical diffraction ; Optical imaging ; Optical security ; Optical sensors</subject><ispartof>IEEE photonics journal, 2021-08, Vol.13 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-c90293735cf5416a6438ecdac92422192f55a6f7e48a7e40fb1bfa33048a169b3</citedby><cites>FETCH-LOGICAL-c405t-c90293735cf5416a6438ecdac92422192f55a6f7e48a7e40fb1bfa33048a169b3</cites><orcidid>0000-0002-7772-6702 ; 0000-0002-4253-1067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9478270$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Wan, Yuhong</creatorcontrib><creatorcontrib>Wan, Shujia</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><title>Optical Compressive Encryption via Deep Learning</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For compression, the ciphertext is first resized to a relatively small dimension by bilinear interpolation and thereafter condensed by the JPEG2000 standard. For decompression, a well-trained deep neural network (DNN) can be employed to perfectly recover the original ciphertext, in spite of the severe information loss suffered by the compressed file. In contrast with JPEG2000 and JPEG, our proposal can achieve a far smaller size of the compressed file (SCF) while offering comparable decompression quality. In addition, the SCF can be further reduced by compromising the quality of the recovered plaintext. It is also shown that the compression procedure can provide an additional security level, and this may offer new insight into the compressive encryption in optical cryptosystems. Both simulation and experimental results are presented to demonstrate the proposal.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>ciphertext compression</subject><subject>Computer systems</subject><subject>Cryptography</subject><subject>Data transfer (computers)</subject><subject>Deep learning</subject><subject>Encryption</subject><subject>Holographic optical components</subject><subject>Holography</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Multiplexing</subject><subject>Optical diffraction</subject><subject>Optical imaging</subject><subject>Optical security</subject><subject>Optical sensors</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtuwjAQtKpWKqX9gfYSqWfo-rFOfKzoAyokeqBna2McFARx6gASf99AEOplH6Od2dEw9shhyDmYl6_v8Ww-FCD4UILBlIsr1uNGyQFoxOt_8y27a5oVgDYcTY_BrN6WjtbJKGzq6Jum3PvkvXLx0OKhSvYlJW_e18nUU6zKannPbgpaN_7h3Pvs5-N9PhoPprPPyeh1OnAKcDtwBoSRqURXoOKatJKZdwtyRighuBEFIuki9SqjtkCR87wgKaHduTa57LNJp7sItLJ1LDcUDzZQaU9AiEtLsbW-9jZTmGtQUuWISgvKyJDIUlLkELQvWq3nTquO4Xfnm61dhV2sWvtWIGIqUIm0vRLdlYuhaaIvLl852GPK9pSyPaZszym3pKeOVHrvLwSj0kykIP8AQk12Lw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Qin, Yi</creator><creator>Wan, Yuhong</creator><creator>Wan, Shujia</creator><creator>Liu, Chao</creator><creator>Liu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7772-6702</orcidid><orcidid>https://orcid.org/0000-0002-4253-1067</orcidid></search><sort><creationdate>20210801</creationdate><title>Optical Compressive Encryption via Deep Learning</title><author>Qin, Yi ; Wan, Yuhong ; Wan, Shujia ; Liu, Chao ; Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-c90293735cf5416a6438ecdac92422192f55a6f7e48a7e40fb1bfa33048a169b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>ciphertext compression</topic><topic>Computer systems</topic><topic>Cryptography</topic><topic>Data transfer (computers)</topic><topic>Deep learning</topic><topic>Encryption</topic><topic>Holographic optical components</topic><topic>Holography</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Multiplexing</topic><topic>Optical diffraction</topic><topic>Optical imaging</topic><topic>Optical security</topic><topic>Optical sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Wan, Yuhong</creatorcontrib><creatorcontrib>Wan, Shujia</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yi</au><au>Wan, Yuhong</au><au>Wan, Shujia</au><au>Liu, Chao</au><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Compressive Encryption via Deep Learning</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For compression, the ciphertext is first resized to a relatively small dimension by bilinear interpolation and thereafter condensed by the JPEG2000 standard. For decompression, a well-trained deep neural network (DNN) can be employed to perfectly recover the original ciphertext, in spite of the severe information loss suffered by the compressed file. In contrast with JPEG2000 and JPEG, our proposal can achieve a far smaller size of the compressed file (SCF) while offering comparable decompression quality. In addition, the SCF can be further reduced by compromising the quality of the recovered plaintext. It is also shown that the compression procedure can provide an additional security level, and this may offer new insight into the compressive encryption in optical cryptosystems. Both simulation and experimental results are presented to demonstrate the proposal.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2021.3095712</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7772-6702</orcidid><orcidid>https://orcid.org/0000-0002-4253-1067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2021-08, Vol.13 (4), p.1-8 |
issn | 1943-0655 1943-0655 1943-0647 |
language | eng |
recordid | cdi_proquest_journals_2555725427 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial neural networks ciphertext compression Computer systems Cryptography Data transfer (computers) Deep learning Encryption Holographic optical components Holography Image coding Image compression Interpolation Machine learning Multiplexing Optical diffraction Optical imaging Optical security Optical sensors |
title | Optical Compressive Encryption via Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Compressive%20Encryption%20via%20Deep%20Learning&rft.jtitle=IEEE%20photonics%20journal&rft.au=Qin,%20Yi&rft.date=2021-08-01&rft.volume=13&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2021.3095712&rft_dat=%3Cproquest_cross%3E2555725427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555725427&rft_id=info:pmid/&rft_ieee_id=9478270&rft_doaj_id=oai_doaj_org_article_845b60434b55462a8a9a287a4ac506ef&rfr_iscdi=true |