Optical Compressive Encryption via Deep Learning

The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2021-08, Vol.13 (4), p.1-8
Hauptverfasser: Qin, Yi, Wan, Yuhong, Wan, Shujia, Liu, Chao, Liu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 4
container_start_page 1
container_title IEEE photonics journal
container_volume 13
creator Qin, Yi
Wan, Yuhong
Wan, Shujia
Liu, Chao
Liu, Wei
description The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For compression, the ciphertext is first resized to a relatively small dimension by bilinear interpolation and thereafter condensed by the JPEG2000 standard. For decompression, a well-trained deep neural network (DNN) can be employed to perfectly recover the original ciphertext, in spite of the severe information loss suffered by the compressed file. In contrast with JPEG2000 and JPEG, our proposal can achieve a far smaller size of the compressed file (SCF) while offering comparable decompression quality. In addition, the SCF can be further reduced by compromising the quality of the recovered plaintext. It is also shown that the compression procedure can provide an additional security level, and this may offer new insight into the compressive encryption in optical cryptosystems. Both simulation and experimental results are presented to demonstrate the proposal.
doi_str_mv 10.1109/JPHOT.2021.3095712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555725427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9478270</ieee_id><doaj_id>oai_doaj_org_article_845b60434b55462a8a9a287a4ac506ef</doaj_id><sourcerecordid>2555725427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-c90293735cf5416a6438ecdac92422192f55a6f7e48a7e40fb1bfa33048a169b3</originalsourceid><addsrcrecordid>eNpNUMtuwjAQtKpWKqX9gfYSqWfo-rFOfKzoAyokeqBna2McFARx6gASf99AEOplH6Od2dEw9shhyDmYl6_v8Ww-FCD4UILBlIsr1uNGyQFoxOt_8y27a5oVgDYcTY_BrN6WjtbJKGzq6Jum3PvkvXLx0OKhSvYlJW_e18nUU6zKannPbgpaN_7h3Pvs5-N9PhoPprPPyeh1OnAKcDtwBoSRqURXoOKatJKZdwtyRighuBEFIuki9SqjtkCR87wgKaHduTa57LNJp7sItLJ1LDcUDzZQaU9AiEtLsbW-9jZTmGtQUuWISgvKyJDIUlLkELQvWq3nTquO4Xfnm61dhV2sWvtWIGIqUIm0vRLdlYuhaaIvLl852GPK9pSyPaZszym3pKeOVHrvLwSj0kykIP8AQk12Lw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555725427</pqid></control><display><type>article</type><title>Optical Compressive Encryption via Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qin, Yi ; Wan, Yuhong ; Wan, Shujia ; Liu, Chao ; Liu, Wei</creator><creatorcontrib>Qin, Yi ; Wan, Yuhong ; Wan, Shujia ; Liu, Chao ; Liu, Wei</creatorcontrib><description>The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For compression, the ciphertext is first resized to a relatively small dimension by bilinear interpolation and thereafter condensed by the JPEG2000 standard. For decompression, a well-trained deep neural network (DNN) can be employed to perfectly recover the original ciphertext, in spite of the severe information loss suffered by the compressed file. In contrast with JPEG2000 and JPEG, our proposal can achieve a far smaller size of the compressed file (SCF) while offering comparable decompression quality. In addition, the SCF can be further reduced by compromising the quality of the recovered plaintext. It is also shown that the compression procedure can provide an additional security level, and this may offer new insight into the compressive encryption in optical cryptosystems. Both simulation and experimental results are presented to demonstrate the proposal.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2021.3095712</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; ciphertext compression ; Computer systems ; Cryptography ; Data transfer (computers) ; Deep learning ; Encryption ; Holographic optical components ; Holography ; Image coding ; Image compression ; Interpolation ; Machine learning ; Multiplexing ; Optical diffraction ; Optical imaging ; Optical security ; Optical sensors</subject><ispartof>IEEE photonics journal, 2021-08, Vol.13 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-c90293735cf5416a6438ecdac92422192f55a6f7e48a7e40fb1bfa33048a169b3</citedby><cites>FETCH-LOGICAL-c405t-c90293735cf5416a6438ecdac92422192f55a6f7e48a7e40fb1bfa33048a169b3</cites><orcidid>0000-0002-7772-6702 ; 0000-0002-4253-1067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9478270$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Wan, Yuhong</creatorcontrib><creatorcontrib>Wan, Shujia</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><title>Optical Compressive Encryption via Deep Learning</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For compression, the ciphertext is first resized to a relatively small dimension by bilinear interpolation and thereafter condensed by the JPEG2000 standard. For decompression, a well-trained deep neural network (DNN) can be employed to perfectly recover the original ciphertext, in spite of the severe information loss suffered by the compressed file. In contrast with JPEG2000 and JPEG, our proposal can achieve a far smaller size of the compressed file (SCF) while offering comparable decompression quality. In addition, the SCF can be further reduced by compromising the quality of the recovered plaintext. It is also shown that the compression procedure can provide an additional security level, and this may offer new insight into the compressive encryption in optical cryptosystems. Both simulation and experimental results are presented to demonstrate the proposal.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>ciphertext compression</subject><subject>Computer systems</subject><subject>Cryptography</subject><subject>Data transfer (computers)</subject><subject>Deep learning</subject><subject>Encryption</subject><subject>Holographic optical components</subject><subject>Holography</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Multiplexing</subject><subject>Optical diffraction</subject><subject>Optical imaging</subject><subject>Optical security</subject><subject>Optical sensors</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtuwjAQtKpWKqX9gfYSqWfo-rFOfKzoAyokeqBna2McFARx6gASf99AEOplH6Od2dEw9shhyDmYl6_v8Ww-FCD4UILBlIsr1uNGyQFoxOt_8y27a5oVgDYcTY_BrN6WjtbJKGzq6Jum3PvkvXLx0OKhSvYlJW_e18nUU6zKannPbgpaN_7h3Pvs5-N9PhoPprPPyeh1OnAKcDtwBoSRqURXoOKatJKZdwtyRighuBEFIuki9SqjtkCR87wgKaHduTa57LNJp7sItLJ1LDcUDzZQaU9AiEtLsbW-9jZTmGtQUuWISgvKyJDIUlLkELQvWq3nTquO4Xfnm61dhV2sWvtWIGIqUIm0vRLdlYuhaaIvLl852GPK9pSyPaZszym3pKeOVHrvLwSj0kykIP8AQk12Lw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Qin, Yi</creator><creator>Wan, Yuhong</creator><creator>Wan, Shujia</creator><creator>Liu, Chao</creator><creator>Liu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7772-6702</orcidid><orcidid>https://orcid.org/0000-0002-4253-1067</orcidid></search><sort><creationdate>20210801</creationdate><title>Optical Compressive Encryption via Deep Learning</title><author>Qin, Yi ; Wan, Yuhong ; Wan, Shujia ; Liu, Chao ; Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-c90293735cf5416a6438ecdac92422192f55a6f7e48a7e40fb1bfa33048a169b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>ciphertext compression</topic><topic>Computer systems</topic><topic>Cryptography</topic><topic>Data transfer (computers)</topic><topic>Deep learning</topic><topic>Encryption</topic><topic>Holographic optical components</topic><topic>Holography</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Multiplexing</topic><topic>Optical diffraction</topic><topic>Optical imaging</topic><topic>Optical security</topic><topic>Optical sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Wan, Yuhong</creatorcontrib><creatorcontrib>Wan, Shujia</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yi</au><au>Wan, Yuhong</au><au>Wan, Shujia</au><au>Liu, Chao</au><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Compressive Encryption via Deep Learning</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>The compression of the ciphertext of a cryptosystem is desirable considering the dramatic increase in secure data transfer via Internet. In this paper, we propose a simple and universal scheme to compress and decompress the ciphertext of an optical cryptosystem by the aid of deep learning (DL). For compression, the ciphertext is first resized to a relatively small dimension by bilinear interpolation and thereafter condensed by the JPEG2000 standard. For decompression, a well-trained deep neural network (DNN) can be employed to perfectly recover the original ciphertext, in spite of the severe information loss suffered by the compressed file. In contrast with JPEG2000 and JPEG, our proposal can achieve a far smaller size of the compressed file (SCF) while offering comparable decompression quality. In addition, the SCF can be further reduced by compromising the quality of the recovered plaintext. It is also shown that the compression procedure can provide an additional security level, and this may offer new insight into the compressive encryption in optical cryptosystems. Both simulation and experimental results are presented to demonstrate the proposal.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2021.3095712</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7772-6702</orcidid><orcidid>https://orcid.org/0000-0002-4253-1067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2021-08, Vol.13 (4), p.1-8
issn 1943-0655
1943-0655
1943-0647
language eng
recordid cdi_proquest_journals_2555725427
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial neural networks
ciphertext compression
Computer systems
Cryptography
Data transfer (computers)
Deep learning
Encryption
Holographic optical components
Holography
Image coding
Image compression
Interpolation
Machine learning
Multiplexing
Optical diffraction
Optical imaging
Optical security
Optical sensors
title Optical Compressive Encryption via Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Compressive%20Encryption%20via%20Deep%20Learning&rft.jtitle=IEEE%20photonics%20journal&rft.au=Qin,%20Yi&rft.date=2021-08-01&rft.volume=13&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2021.3095712&rft_dat=%3Cproquest_cross%3E2555725427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555725427&rft_id=info:pmid/&rft_ieee_id=9478270&rft_doaj_id=oai_doaj_org_article_845b60434b55462a8a9a287a4ac506ef&rfr_iscdi=true