A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices

The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-08, Vol.68 (8), p.3974-3981
Hauptverfasser: Colalongo, Luigi, Comensoli, Simone, Richelli, Anna, Vajna, Zsolt Miklos Kovacs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3981
container_issue 8
container_start_page 3974
container_title IEEE transactions on electron devices
container_volume 68
creator Colalongo, Luigi
Comensoli, Simone
Richelli, Anna
Vajna, Zsolt Miklos Kovacs
description The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this work, the carriers' transport equations, rather than linearized, are treated as differential equations, and an LC model that exactly solves the diffusion equations is presented. It improves the accuracy of the traditional models and provides a numerically stable expression of the currents while keeping the same simplicity. Furthermore, the continuity equations are rigorously discretized by means of the box integration method, widely used in finite element device simulators, which has been proven to be numerically stable and accurate. The new model is verified both on the static and transient characteristics of commercial insulated-gate bipolar transistors and power diodes.
doi_str_mv 10.1109/TED.2021.3089445
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2555724734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9464769</ieee_id><sourcerecordid>2555724734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-285494723d1e38f7557d86b3872c6e7a9736454084a46971cff9a5170743880f3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59T9mP06lrRVoX6A9bzEzURT2mzdNIr-9W5p8TTM8N6bx4-QS0ZHjFF7s5hORpxyNhLUWAB5RAZMSp1bBeqYDChlJrfCiFNy1nXLtCoAPiDFOHsM7appsYzNL1bZvF9vsMqLjzK-Y_YQKlxldYjZc_jGmL3guvGhrXq_TbcJfjUeu3NyUperDi8Oc0heZ9NFcZfPn27vi_E899yybc6NBAuai4qhMLVO7Sqj3oTR3CvUpdVCgQRqoARlNfN1bUvJNNUgjKG1GJLrfe4mhs8eu61bhj626aXjMqVx0AKSiu5VPoaui1i7TWzWZfxxjLodKpdQuR0qd0CVLFd7S4OI_3ILCrSy4g-i72H4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555724734</pqid></control><display><type>article</type><title>A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Colalongo, Luigi ; Comensoli, Simone ; Richelli, Anna ; Vajna, Zsolt Miklos Kovacs</creator><creatorcontrib>Colalongo, Luigi ; Comensoli, Simone ; Richelli, Anna ; Vajna, Zsolt Miklos Kovacs</creatorcontrib><description>The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this work, the carriers' transport equations, rather than linearized, are treated as differential equations, and an LC model that exactly solves the diffusion equations is presented. It improves the accuracy of the traditional models and provides a numerically stable expression of the currents while keeping the same simplicity. Furthermore, the continuity equations are rigorously discretized by means of the box integration method, widely used in finite element device simulators, which has been proven to be numerically stable and accurate. The new model is verified both on the static and transient characteristics of commercial insulated-gate bipolar transistors and power diodes.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3089445</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Charge carrier processes ; Circuits ; Compact model ; Continuity equation ; Differential equations ; diffusion current ; Finite element method ; Insulated gate bipolar transistors ; Integrated circuit modeling ; Linearization ; lumped charge (LC) ; Mathematical analysis ; Mathematical model ; Mathematical models ; Numerical models ; Numerical stability ; Power semiconductor devices ; Scharfetter and Gummel ; Semiconductor device modeling ; Semiconductor diodes ; Simulators ; Transport equations</subject><ispartof>IEEE transactions on electron devices, 2021-08, Vol.68 (8), p.3974-3981</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-285494723d1e38f7557d86b3872c6e7a9736454084a46971cff9a5170743880f3</citedby><cites>FETCH-LOGICAL-c291t-285494723d1e38f7557d86b3872c6e7a9736454084a46971cff9a5170743880f3</cites><orcidid>0000-0003-4460-7683 ; 0000-0003-1507-9009 ; 0000-0003-4269-1228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9464769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9464769$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Colalongo, Luigi</creatorcontrib><creatorcontrib>Comensoli, Simone</creatorcontrib><creatorcontrib>Richelli, Anna</creatorcontrib><creatorcontrib>Vajna, Zsolt Miklos Kovacs</creatorcontrib><title>A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this work, the carriers' transport equations, rather than linearized, are treated as differential equations, and an LC model that exactly solves the diffusion equations is presented. It improves the accuracy of the traditional models and provides a numerically stable expression of the currents while keeping the same simplicity. Furthermore, the continuity equations are rigorously discretized by means of the box integration method, widely used in finite element device simulators, which has been proven to be numerically stable and accurate. The new model is verified both on the static and transient characteristics of commercial insulated-gate bipolar transistors and power diodes.</description><subject>Accuracy</subject><subject>Charge carrier processes</subject><subject>Circuits</subject><subject>Compact model</subject><subject>Continuity equation</subject><subject>Differential equations</subject><subject>diffusion current</subject><subject>Finite element method</subject><subject>Insulated gate bipolar transistors</subject><subject>Integrated circuit modeling</subject><subject>Linearization</subject><subject>lumped charge (LC)</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Numerical stability</subject><subject>Power semiconductor devices</subject><subject>Scharfetter and Gummel</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor diodes</subject><subject>Simulators</subject><subject>Transport equations</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59T9mP06lrRVoX6A9bzEzURT2mzdNIr-9W5p8TTM8N6bx4-QS0ZHjFF7s5hORpxyNhLUWAB5RAZMSp1bBeqYDChlJrfCiFNy1nXLtCoAPiDFOHsM7appsYzNL1bZvF9vsMqLjzK-Y_YQKlxldYjZc_jGmL3guvGhrXq_TbcJfjUeu3NyUperDi8Oc0heZ9NFcZfPn27vi_E899yybc6NBAuai4qhMLVO7Sqj3oTR3CvUpdVCgQRqoARlNfN1bUvJNNUgjKG1GJLrfe4mhs8eu61bhj626aXjMqVx0AKSiu5VPoaui1i7TWzWZfxxjLodKpdQuR0qd0CVLFd7S4OI_3ILCrSy4g-i72H4</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Colalongo, Luigi</creator><creator>Comensoli, Simone</creator><creator>Richelli, Anna</creator><creator>Vajna, Zsolt Miklos Kovacs</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4460-7683</orcidid><orcidid>https://orcid.org/0000-0003-1507-9009</orcidid><orcidid>https://orcid.org/0000-0003-4269-1228</orcidid></search><sort><creationdate>20210801</creationdate><title>A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices</title><author>Colalongo, Luigi ; Comensoli, Simone ; Richelli, Anna ; Vajna, Zsolt Miklos Kovacs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-285494723d1e38f7557d86b3872c6e7a9736454084a46971cff9a5170743880f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Charge carrier processes</topic><topic>Circuits</topic><topic>Compact model</topic><topic>Continuity equation</topic><topic>Differential equations</topic><topic>diffusion current</topic><topic>Finite element method</topic><topic>Insulated gate bipolar transistors</topic><topic>Integrated circuit modeling</topic><topic>Linearization</topic><topic>lumped charge (LC)</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Numerical stability</topic><topic>Power semiconductor devices</topic><topic>Scharfetter and Gummel</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor diodes</topic><topic>Simulators</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colalongo, Luigi</creatorcontrib><creatorcontrib>Comensoli, Simone</creatorcontrib><creatorcontrib>Richelli, Anna</creatorcontrib><creatorcontrib>Vajna, Zsolt Miklos Kovacs</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colalongo, Luigi</au><au>Comensoli, Simone</au><au>Richelli, Anna</au><au>Vajna, Zsolt Miklos Kovacs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>68</volume><issue>8</issue><spage>3974</spage><epage>3981</epage><pages>3974-3981</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this work, the carriers' transport equations, rather than linearized, are treated as differential equations, and an LC model that exactly solves the diffusion equations is presented. It improves the accuracy of the traditional models and provides a numerically stable expression of the currents while keeping the same simplicity. Furthermore, the continuity equations are rigorously discretized by means of the box integration method, widely used in finite element device simulators, which has been proven to be numerically stable and accurate. The new model is verified both on the static and transient characteristics of commercial insulated-gate bipolar transistors and power diodes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3089445</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4460-7683</orcidid><orcidid>https://orcid.org/0000-0003-1507-9009</orcidid><orcidid>https://orcid.org/0000-0003-4269-1228</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-08, Vol.68 (8), p.3974-3981
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2555724734
source IEEE Electronic Library (IEL)
subjects Accuracy
Charge carrier processes
Circuits
Compact model
Continuity equation
Differential equations
diffusion current
Finite element method
Insulated gate bipolar transistors
Integrated circuit modeling
Linearization
lumped charge (LC)
Mathematical analysis
Mathematical model
Mathematical models
Numerical models
Numerical stability
Power semiconductor devices
Scharfetter and Gummel
Semiconductor device modeling
Semiconductor diodes
Simulators
Transport equations
title A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonlinearized%20Lumped-Charge%20Model%20for%20Power%20Semiconductor%20Devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Colalongo,%20Luigi&rft.date=2021-08-01&rft.volume=68&rft.issue=8&rft.spage=3974&rft.epage=3981&rft.pages=3974-3981&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3089445&rft_dat=%3Cproquest_RIE%3E2555724734%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555724734&rft_id=info:pmid/&rft_ieee_id=9464769&rfr_iscdi=true