A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices
The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-08, Vol.68 (8), p.3974-3981 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3981 |
---|---|
container_issue | 8 |
container_start_page | 3974 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Colalongo, Luigi Comensoli, Simone Richelli, Anna Vajna, Zsolt Miklos Kovacs |
description | The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this work, the carriers' transport equations, rather than linearized, are treated as differential equations, and an LC model that exactly solves the diffusion equations is presented. It improves the accuracy of the traditional models and provides a numerically stable expression of the currents while keeping the same simplicity. Furthermore, the continuity equations are rigorously discretized by means of the box integration method, widely used in finite element device simulators, which has been proven to be numerically stable and accurate. The new model is verified both on the static and transient characteristics of commercial insulated-gate bipolar transistors and power diodes. |
doi_str_mv | 10.1109/TED.2021.3089445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2555724734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9464769</ieee_id><sourcerecordid>2555724734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-285494723d1e38f7557d86b3872c6e7a9736454084a46971cff9a5170743880f3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59T9mP06lrRVoX6A9bzEzURT2mzdNIr-9W5p8TTM8N6bx4-QS0ZHjFF7s5hORpxyNhLUWAB5RAZMSp1bBeqYDChlJrfCiFNy1nXLtCoAPiDFOHsM7appsYzNL1bZvF9vsMqLjzK-Y_YQKlxldYjZc_jGmL3guvGhrXq_TbcJfjUeu3NyUperDi8Oc0heZ9NFcZfPn27vi_E899yybc6NBAuai4qhMLVO7Sqj3oTR3CvUpdVCgQRqoARlNfN1bUvJNNUgjKG1GJLrfe4mhs8eu61bhj626aXjMqVx0AKSiu5VPoaui1i7TWzWZfxxjLodKpdQuR0qd0CVLFd7S4OI_3ILCrSy4g-i72H4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555724734</pqid></control><display><type>article</type><title>A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Colalongo, Luigi ; Comensoli, Simone ; Richelli, Anna ; Vajna, Zsolt Miklos Kovacs</creator><creatorcontrib>Colalongo, Luigi ; Comensoli, Simone ; Richelli, Anna ; Vajna, Zsolt Miklos Kovacs</creatorcontrib><description>The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this work, the carriers' transport equations, rather than linearized, are treated as differential equations, and an LC model that exactly solves the diffusion equations is presented. It improves the accuracy of the traditional models and provides a numerically stable expression of the currents while keeping the same simplicity. Furthermore, the continuity equations are rigorously discretized by means of the box integration method, widely used in finite element device simulators, which has been proven to be numerically stable and accurate. The new model is verified both on the static and transient characteristics of commercial insulated-gate bipolar transistors and power diodes.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3089445</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Charge carrier processes ; Circuits ; Compact model ; Continuity equation ; Differential equations ; diffusion current ; Finite element method ; Insulated gate bipolar transistors ; Integrated circuit modeling ; Linearization ; lumped charge (LC) ; Mathematical analysis ; Mathematical model ; Mathematical models ; Numerical models ; Numerical stability ; Power semiconductor devices ; Scharfetter and Gummel ; Semiconductor device modeling ; Semiconductor diodes ; Simulators ; Transport equations</subject><ispartof>IEEE transactions on electron devices, 2021-08, Vol.68 (8), p.3974-3981</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-285494723d1e38f7557d86b3872c6e7a9736454084a46971cff9a5170743880f3</citedby><cites>FETCH-LOGICAL-c291t-285494723d1e38f7557d86b3872c6e7a9736454084a46971cff9a5170743880f3</cites><orcidid>0000-0003-4460-7683 ; 0000-0003-1507-9009 ; 0000-0003-4269-1228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9464769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9464769$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Colalongo, Luigi</creatorcontrib><creatorcontrib>Comensoli, Simone</creatorcontrib><creatorcontrib>Richelli, Anna</creatorcontrib><creatorcontrib>Vajna, Zsolt Miklos Kovacs</creatorcontrib><title>A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this work, the carriers' transport equations, rather than linearized, are treated as differential equations, and an LC model that exactly solves the diffusion equations is presented. It improves the accuracy of the traditional models and provides a numerically stable expression of the currents while keeping the same simplicity. Furthermore, the continuity equations are rigorously discretized by means of the box integration method, widely used in finite element device simulators, which has been proven to be numerically stable and accurate. The new model is verified both on the static and transient characteristics of commercial insulated-gate bipolar transistors and power diodes.</description><subject>Accuracy</subject><subject>Charge carrier processes</subject><subject>Circuits</subject><subject>Compact model</subject><subject>Continuity equation</subject><subject>Differential equations</subject><subject>diffusion current</subject><subject>Finite element method</subject><subject>Insulated gate bipolar transistors</subject><subject>Integrated circuit modeling</subject><subject>Linearization</subject><subject>lumped charge (LC)</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Numerical stability</subject><subject>Power semiconductor devices</subject><subject>Scharfetter and Gummel</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor diodes</subject><subject>Simulators</subject><subject>Transport equations</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59T9mP06lrRVoX6A9bzEzURT2mzdNIr-9W5p8TTM8N6bx4-QS0ZHjFF7s5hORpxyNhLUWAB5RAZMSp1bBeqYDChlJrfCiFNy1nXLtCoAPiDFOHsM7appsYzNL1bZvF9vsMqLjzK-Y_YQKlxldYjZc_jGmL3guvGhrXq_TbcJfjUeu3NyUperDi8Oc0heZ9NFcZfPn27vi_E899yybc6NBAuai4qhMLVO7Sqj3oTR3CvUpdVCgQRqoARlNfN1bUvJNNUgjKG1GJLrfe4mhs8eu61bhj626aXjMqVx0AKSiu5VPoaui1i7TWzWZfxxjLodKpdQuR0qd0CVLFd7S4OI_3ILCrSy4g-i72H4</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Colalongo, Luigi</creator><creator>Comensoli, Simone</creator><creator>Richelli, Anna</creator><creator>Vajna, Zsolt Miklos Kovacs</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4460-7683</orcidid><orcidid>https://orcid.org/0000-0003-1507-9009</orcidid><orcidid>https://orcid.org/0000-0003-4269-1228</orcidid></search><sort><creationdate>20210801</creationdate><title>A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices</title><author>Colalongo, Luigi ; Comensoli, Simone ; Richelli, Anna ; Vajna, Zsolt Miklos Kovacs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-285494723d1e38f7557d86b3872c6e7a9736454084a46971cff9a5170743880f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Charge carrier processes</topic><topic>Circuits</topic><topic>Compact model</topic><topic>Continuity equation</topic><topic>Differential equations</topic><topic>diffusion current</topic><topic>Finite element method</topic><topic>Insulated gate bipolar transistors</topic><topic>Integrated circuit modeling</topic><topic>Linearization</topic><topic>lumped charge (LC)</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Numerical stability</topic><topic>Power semiconductor devices</topic><topic>Scharfetter and Gummel</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor diodes</topic><topic>Simulators</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colalongo, Luigi</creatorcontrib><creatorcontrib>Comensoli, Simone</creatorcontrib><creatorcontrib>Richelli, Anna</creatorcontrib><creatorcontrib>Vajna, Zsolt Miklos Kovacs</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colalongo, Luigi</au><au>Comensoli, Simone</au><au>Richelli, Anna</au><au>Vajna, Zsolt Miklos Kovacs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>68</volume><issue>8</issue><spage>3974</spage><epage>3981</epage><pages>3974-3981</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The lumped-charge (LC) technique is widely used to develop simple and physically based power device models for circuit simulators. The existing models, due to the linearization of the diffusion equations in the drift region, have some limitations that impact accuracy and numerical stability. In this work, the carriers' transport equations, rather than linearized, are treated as differential equations, and an LC model that exactly solves the diffusion equations is presented. It improves the accuracy of the traditional models and provides a numerically stable expression of the currents while keeping the same simplicity. Furthermore, the continuity equations are rigorously discretized by means of the box integration method, widely used in finite element device simulators, which has been proven to be numerically stable and accurate. The new model is verified both on the static and transient characteristics of commercial insulated-gate bipolar transistors and power diodes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3089445</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4460-7683</orcidid><orcidid>https://orcid.org/0000-0003-1507-9009</orcidid><orcidid>https://orcid.org/0000-0003-4269-1228</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-08, Vol.68 (8), p.3974-3981 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2555724734 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Charge carrier processes Circuits Compact model Continuity equation Differential equations diffusion current Finite element method Insulated gate bipolar transistors Integrated circuit modeling Linearization lumped charge (LC) Mathematical analysis Mathematical model Mathematical models Numerical models Numerical stability Power semiconductor devices Scharfetter and Gummel Semiconductor device modeling Semiconductor diodes Simulators Transport equations |
title | A Nonlinearized Lumped-Charge Model for Power Semiconductor Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonlinearized%20Lumped-Charge%20Model%20for%20Power%20Semiconductor%20Devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Colalongo,%20Luigi&rft.date=2021-08-01&rft.volume=68&rft.issue=8&rft.spage=3974&rft.epage=3981&rft.pages=3974-3981&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3089445&rft_dat=%3Cproquest_RIE%3E2555724734%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555724734&rft_id=info:pmid/&rft_ieee_id=9464769&rfr_iscdi=true |