Uncovering heterogeneous social effects in binary choices

We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2021-06, Vol.222 (2), p.959-973
Hauptverfasser: Lin, Zhongjian, Tang, Xun, Yu, Ning Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 973
container_issue 2
container_start_page 959
container_title Journal of econometrics
container_volume 222
creator Lin, Zhongjian
Tang, Xun
Yu, Ning Neil
description We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each other’s outcomes. We recover parameters in social effects as well as the unknown influence matrices by exploiting how these matrices are linked to the reduced-form effects of multiple characteristics. Monte Carlo experiments show that a nested fixed-point maximum-likelihood estimator for the social effects has good finite-sample performance. Using a new dataset, we analyze how college roommates influence each other’s decisions to participate in volunteering activities. Our estimates reveal substantial heterogeneity in the social effects among these students.
doi_str_mv 10.1016/j.jeconom.2020.08.005
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2555684799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658765419</galeid><els_id>S0304407620303080</els_id><sourcerecordid>A658765419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-31a9c34b8ca951bf1bb9d913a753acb1faba032fe1a4e528f0a7f9fa3ce497113</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QRgQ3M2YTJKZZCWl-AUFN3YdMunLNEOb1GRa9N-b0u5dvc2593EPQvcEVwST5mmoBjDBh21V4xpXWFQY8ws0IaKty0ZIfokmmGJWMtw21-gmpQFnggk6QXLpTThAdL4v1jBCDD14CPtUpGCc3hRgLZgxFc4XnfM6_hZmHZyBdIuurN4kuDvfKVq-vnzN38vF59vHfLYoDRN4LCnR0lDWCaMlJ50lXSdXklDdcqpNR6zuNKa1BaIZ8FpYrFsrraYGmGwJoVP0cOrdxfC9hzSqIeyjzy9VzTlvBGulzNTjier1BpTLo_wIP2Ov9ykpNWu4aBvOyBHkJ9DEkFIEq3bRbfMuRbA66lSDOutUR50KC5Vl5dzzKQd568FBVMk48AZWLmZBahXcPw1_-K2AiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555684799</pqid></control><display><type>article</type><title>Uncovering heterogeneous social effects in binary choices</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Zhongjian ; Tang, Xun ; Yu, Ning Neil</creator><creatorcontrib>Lin, Zhongjian ; Tang, Xun ; Yu, Ning Neil</creatorcontrib><description>We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each other’s outcomes. We recover parameters in social effects as well as the unknown influence matrices by exploiting how these matrices are linked to the reduced-form effects of multiple characteristics. Monte Carlo experiments show that a nested fixed-point maximum-likelihood estimator for the social effects has good finite-sample performance. Using a new dataset, we analyze how college roommates influence each other’s decisions to participate in volunteering activities. Our estimates reveal substantial heterogeneity in the social effects among these students.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.08.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analysis ; At risk students ; Binary choice ; Contextual effects ; Econometrics ; Exclusion restriction ; Heterogeneous social effect ; Inequality ; Matrices ; Monte Carlo simulation ; Peer effect ; Roommates ; Social aspects ; Social networks ; Volunteering ; Volunteerism</subject><ispartof>Journal of econometrics, 2021-06, Vol.222 (2), p.959-973</ispartof><rights>2020 Elsevier B.V.</rights><rights>COPYRIGHT 2021 Elsevier Science Publishers</rights><rights>Copyright Elsevier Sequoia S.A. Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-31a9c34b8ca951bf1bb9d913a753acb1faba032fe1a4e528f0a7f9fa3ce497113</citedby><cites>FETCH-LOGICAL-c480t-31a9c34b8ca951bf1bb9d913a753acb1faba032fe1a4e528f0a7f9fa3ce497113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.08.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Lin, Zhongjian</creatorcontrib><creatorcontrib>Tang, Xun</creatorcontrib><creatorcontrib>Yu, Ning Neil</creatorcontrib><title>Uncovering heterogeneous social effects in binary choices</title><title>Journal of econometrics</title><description>We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each other’s outcomes. We recover parameters in social effects as well as the unknown influence matrices by exploiting how these matrices are linked to the reduced-form effects of multiple characteristics. Monte Carlo experiments show that a nested fixed-point maximum-likelihood estimator for the social effects has good finite-sample performance. Using a new dataset, we analyze how college roommates influence each other’s decisions to participate in volunteering activities. Our estimates reveal substantial heterogeneity in the social effects among these students.</description><subject>Analysis</subject><subject>At risk students</subject><subject>Binary choice</subject><subject>Contextual effects</subject><subject>Econometrics</subject><subject>Exclusion restriction</subject><subject>Heterogeneous social effect</subject><subject>Inequality</subject><subject>Matrices</subject><subject>Monte Carlo simulation</subject><subject>Peer effect</subject><subject>Roommates</subject><subject>Social aspects</subject><subject>Social networks</subject><subject>Volunteering</subject><subject>Volunteerism</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QRgQ3M2YTJKZZCWl-AUFN3YdMunLNEOb1GRa9N-b0u5dvc2593EPQvcEVwST5mmoBjDBh21V4xpXWFQY8ws0IaKty0ZIfokmmGJWMtw21-gmpQFnggk6QXLpTThAdL4v1jBCDD14CPtUpGCc3hRgLZgxFc4XnfM6_hZmHZyBdIuurN4kuDvfKVq-vnzN38vF59vHfLYoDRN4LCnR0lDWCaMlJ50lXSdXklDdcqpNR6zuNKa1BaIZ8FpYrFsrraYGmGwJoVP0cOrdxfC9hzSqIeyjzy9VzTlvBGulzNTjier1BpTLo_wIP2Ov9ykpNWu4aBvOyBHkJ9DEkFIEq3bRbfMuRbA66lSDOutUR50KC5Vl5dzzKQd568FBVMk48AZWLmZBahXcPw1_-K2AiA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lin, Zhongjian</creator><creator>Tang, Xun</creator><creator>Yu, Ning Neil</creator><general>Elsevier B.V</general><general>Elsevier Science Publishers</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20210601</creationdate><title>Uncovering heterogeneous social effects in binary choices</title><author>Lin, Zhongjian ; Tang, Xun ; Yu, Ning Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-31a9c34b8ca951bf1bb9d913a753acb1faba032fe1a4e528f0a7f9fa3ce497113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>At risk students</topic><topic>Binary choice</topic><topic>Contextual effects</topic><topic>Econometrics</topic><topic>Exclusion restriction</topic><topic>Heterogeneous social effect</topic><topic>Inequality</topic><topic>Matrices</topic><topic>Monte Carlo simulation</topic><topic>Peer effect</topic><topic>Roommates</topic><topic>Social aspects</topic><topic>Social networks</topic><topic>Volunteering</topic><topic>Volunteerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhongjian</creatorcontrib><creatorcontrib>Tang, Xun</creatorcontrib><creatorcontrib>Yu, Ning Neil</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhongjian</au><au>Tang, Xun</au><au>Yu, Ning Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering heterogeneous social effects in binary choices</atitle><jtitle>Journal of econometrics</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>222</volume><issue>2</issue><spage>959</spage><epage>973</epage><pages>959-973</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each other’s outcomes. We recover parameters in social effects as well as the unknown influence matrices by exploiting how these matrices are linked to the reduced-form effects of multiple characteristics. Monte Carlo experiments show that a nested fixed-point maximum-likelihood estimator for the social effects has good finite-sample performance. Using a new dataset, we analyze how college roommates influence each other’s decisions to participate in volunteering activities. Our estimates reveal substantial heterogeneity in the social effects among these students.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.08.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2021-06, Vol.222 (2), p.959-973
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2555684799
source ScienceDirect Journals (5 years ago - present)
subjects Analysis
At risk students
Binary choice
Contextual effects
Econometrics
Exclusion restriction
Heterogeneous social effect
Inequality
Matrices
Monte Carlo simulation
Peer effect
Roommates
Social aspects
Social networks
Volunteering
Volunteerism
title Uncovering heterogeneous social effects in binary choices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20heterogeneous%20social%20effects%20in%20binary%20choices&rft.jtitle=Journal%20of%20econometrics&rft.au=Lin,%20Zhongjian&rft.date=2021-06-01&rft.volume=222&rft.issue=2&rft.spage=959&rft.epage=973&rft.pages=959-973&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.08.005&rft_dat=%3Cgale_proqu%3EA658765419%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555684799&rft_id=info:pmid/&rft_galeid=A658765419&rft_els_id=S0304407620303080&rfr_iscdi=true