Uncovering heterogeneous social effects in binary choices
We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each o...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2021-06, Vol.222 (2), p.959-973 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 973 |
---|---|
container_issue | 2 |
container_start_page | 959 |
container_title | Journal of econometrics |
container_volume | 222 |
creator | Lin, Zhongjian Tang, Xun Yu, Ning Neil |
description | We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each other’s outcomes. We recover parameters in social effects as well as the unknown influence matrices by exploiting how these matrices are linked to the reduced-form effects of multiple characteristics. Monte Carlo experiments show that a nested fixed-point maximum-likelihood estimator for the social effects has good finite-sample performance. Using a new dataset, we analyze how college roommates influence each other’s decisions to participate in volunteering activities. Our estimates reveal substantial heterogeneity in the social effects among these students. |
doi_str_mv | 10.1016/j.jeconom.2020.08.005 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2555684799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658765419</galeid><els_id>S0304407620303080</els_id><sourcerecordid>A658765419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-31a9c34b8ca951bf1bb9d913a753acb1faba032fe1a4e528f0a7f9fa3ce497113</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QRgQ3M2YTJKZZCWl-AUFN3YdMunLNEOb1GRa9N-b0u5dvc2593EPQvcEVwST5mmoBjDBh21V4xpXWFQY8ws0IaKty0ZIfokmmGJWMtw21-gmpQFnggk6QXLpTThAdL4v1jBCDD14CPtUpGCc3hRgLZgxFc4XnfM6_hZmHZyBdIuurN4kuDvfKVq-vnzN38vF59vHfLYoDRN4LCnR0lDWCaMlJ50lXSdXklDdcqpNR6zuNKa1BaIZ8FpYrFsrraYGmGwJoVP0cOrdxfC9hzSqIeyjzy9VzTlvBGulzNTjier1BpTLo_wIP2Ov9ykpNWu4aBvOyBHkJ9DEkFIEq3bRbfMuRbA66lSDOutUR50KC5Vl5dzzKQd568FBVMk48AZWLmZBahXcPw1_-K2AiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555684799</pqid></control><display><type>article</type><title>Uncovering heterogeneous social effects in binary choices</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Zhongjian ; Tang, Xun ; Yu, Ning Neil</creator><creatorcontrib>Lin, Zhongjian ; Tang, Xun ; Yu, Ning Neil</creatorcontrib><description>We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each other’s outcomes. We recover parameters in social effects as well as the unknown influence matrices by exploiting how these matrices are linked to the reduced-form effects of multiple characteristics. Monte Carlo experiments show that a nested fixed-point maximum-likelihood estimator for the social effects has good finite-sample performance. Using a new dataset, we analyze how college roommates influence each other’s decisions to participate in volunteering activities. Our estimates reveal substantial heterogeneity in the social effects among these students.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.08.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analysis ; At risk students ; Binary choice ; Contextual effects ; Econometrics ; Exclusion restriction ; Heterogeneous social effect ; Inequality ; Matrices ; Monte Carlo simulation ; Peer effect ; Roommates ; Social aspects ; Social networks ; Volunteering ; Volunteerism</subject><ispartof>Journal of econometrics, 2021-06, Vol.222 (2), p.959-973</ispartof><rights>2020 Elsevier B.V.</rights><rights>COPYRIGHT 2021 Elsevier Science Publishers</rights><rights>Copyright Elsevier Sequoia S.A. Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-31a9c34b8ca951bf1bb9d913a753acb1faba032fe1a4e528f0a7f9fa3ce497113</citedby><cites>FETCH-LOGICAL-c480t-31a9c34b8ca951bf1bb9d913a753acb1faba032fe1a4e528f0a7f9fa3ce497113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.08.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Lin, Zhongjian</creatorcontrib><creatorcontrib>Tang, Xun</creatorcontrib><creatorcontrib>Yu, Ning Neil</creatorcontrib><title>Uncovering heterogeneous social effects in binary choices</title><title>Journal of econometrics</title><description>We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each other’s outcomes. We recover parameters in social effects as well as the unknown influence matrices by exploiting how these matrices are linked to the reduced-form effects of multiple characteristics. Monte Carlo experiments show that a nested fixed-point maximum-likelihood estimator for the social effects has good finite-sample performance. Using a new dataset, we analyze how college roommates influence each other’s decisions to participate in volunteering activities. Our estimates reveal substantial heterogeneity in the social effects among these students.</description><subject>Analysis</subject><subject>At risk students</subject><subject>Binary choice</subject><subject>Contextual effects</subject><subject>Econometrics</subject><subject>Exclusion restriction</subject><subject>Heterogeneous social effect</subject><subject>Inequality</subject><subject>Matrices</subject><subject>Monte Carlo simulation</subject><subject>Peer effect</subject><subject>Roommates</subject><subject>Social aspects</subject><subject>Social networks</subject><subject>Volunteering</subject><subject>Volunteerism</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QRgQ3M2YTJKZZCWl-AUFN3YdMunLNEOb1GRa9N-b0u5dvc2593EPQvcEVwST5mmoBjDBh21V4xpXWFQY8ws0IaKty0ZIfokmmGJWMtw21-gmpQFnggk6QXLpTThAdL4v1jBCDD14CPtUpGCc3hRgLZgxFc4XnfM6_hZmHZyBdIuurN4kuDvfKVq-vnzN38vF59vHfLYoDRN4LCnR0lDWCaMlJ50lXSdXklDdcqpNR6zuNKa1BaIZ8FpYrFsrraYGmGwJoVP0cOrdxfC9hzSqIeyjzy9VzTlvBGulzNTjier1BpTLo_wIP2Ov9ykpNWu4aBvOyBHkJ9DEkFIEq3bRbfMuRbA66lSDOutUR50KC5Vl5dzzKQd568FBVMk48AZWLmZBahXcPw1_-K2AiA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lin, Zhongjian</creator><creator>Tang, Xun</creator><creator>Yu, Ning Neil</creator><general>Elsevier B.V</general><general>Elsevier Science Publishers</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20210601</creationdate><title>Uncovering heterogeneous social effects in binary choices</title><author>Lin, Zhongjian ; Tang, Xun ; Yu, Ning Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-31a9c34b8ca951bf1bb9d913a753acb1faba032fe1a4e528f0a7f9fa3ce497113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>At risk students</topic><topic>Binary choice</topic><topic>Contextual effects</topic><topic>Econometrics</topic><topic>Exclusion restriction</topic><topic>Heterogeneous social effect</topic><topic>Inequality</topic><topic>Matrices</topic><topic>Monte Carlo simulation</topic><topic>Peer effect</topic><topic>Roommates</topic><topic>Social aspects</topic><topic>Social networks</topic><topic>Volunteering</topic><topic>Volunteerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhongjian</creatorcontrib><creatorcontrib>Tang, Xun</creatorcontrib><creatorcontrib>Yu, Ning Neil</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhongjian</au><au>Tang, Xun</au><au>Yu, Ning Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering heterogeneous social effects in binary choices</atitle><jtitle>Journal of econometrics</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>222</volume><issue>2</issue><spage>959</spage><epage>973</epage><pages>959-973</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>We identify and estimate heterogeneous social effects within groups of individuals that make binary choices. These heterogeneous social effects, which include peer and contextual effects, are modeled through unobserved influence matrices that summarize how the members within each group affect each other’s outcomes. We recover parameters in social effects as well as the unknown influence matrices by exploiting how these matrices are linked to the reduced-form effects of multiple characteristics. Monte Carlo experiments show that a nested fixed-point maximum-likelihood estimator for the social effects has good finite-sample performance. Using a new dataset, we analyze how college roommates influence each other’s decisions to participate in volunteering activities. Our estimates reveal substantial heterogeneity in the social effects among these students.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.08.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2021-06, Vol.222 (2), p.959-973 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2555684799 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Analysis At risk students Binary choice Contextual effects Econometrics Exclusion restriction Heterogeneous social effect Inequality Matrices Monte Carlo simulation Peer effect Roommates Social aspects Social networks Volunteering Volunteerism |
title | Uncovering heterogeneous social effects in binary choices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20heterogeneous%20social%20effects%20in%20binary%20choices&rft.jtitle=Journal%20of%20econometrics&rft.au=Lin,%20Zhongjian&rft.date=2021-06-01&rft.volume=222&rft.issue=2&rft.spage=959&rft.epage=973&rft.pages=959-973&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.08.005&rft_dat=%3Cgale_proqu%3EA658765419%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555684799&rft_id=info:pmid/&rft_galeid=A658765419&rft_els_id=S0304407620303080&rfr_iscdi=true |