Existence and Asymptotic Behavior of Solutions for Degenerate Nonlinear Kirchhoff Strings with Variable-Exponent Nonlinearities

In this paper, we investigate the existence of a local solution in time and discuss the exponential asymptotic behavior to a weakly damped wave equation involving the variable-exponents u t t − M ∇ u t 2 Δ u + ∫ 0 t g t − s Δ u s d s + γ 1 u t + u t k x − 1 u t = u p x − 1 u in Ω × ℝ + with simply s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica vietnamica 2021, Vol.46 (3), p.613-643
1. Verfasser: Abita, Rahmoune
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 3
container_start_page 613
container_title Acta mathematica vietnamica
container_volume 46
creator Abita, Rahmoune
description In this paper, we investigate the existence of a local solution in time and discuss the exponential asymptotic behavior to a weakly damped wave equation involving the variable-exponents u t t − M ∇ u t 2 Δ u + ∫ 0 t g t − s Δ u s d s + γ 1 u t + u t k x − 1 u t = u p x − 1 u in Ω × ℝ + with simply supported boundary condition, where Ω is a bounded domain of ℝ n , g > 0 is a memory kernel that decays exponentially, and M ( s ) is a locally Lipschitz function. This kind of problem without the memory term when k (.) and p (.) are constants models viscoelastic Kirchhoff equation.
doi_str_mv 10.1007/s40306-021-00420-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555656242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555656242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5ad393242290f56cb53f58bb97e1fb2e5398835fb20a651e03b5d6617e0c612d3</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EEifgD1BZog6s7dhJSh7HQyAoeLSWk2w4o8MOtg-4ir-Oj0Oio9rRar5Z7RCyz-CQAVRHsQQBqgDOCoCSQ1FtkAkXTBYlK8tNMgEuWdZ1uU32YrQtMFEpqGo5IV_TTxsTug6pcT09jsvXMflkO3qCM_NufaB-oPd-vkjWu0iHvDjDZ3QYTEJ6693cOjSBXtvQzWZ-yOYUrHuO9MOmGX0ywZp2jsX0c_QOXfpDbLIYd8nWYOYR937nDnk8nz6cXhY3dxdXp8c3RSdYkwppetEIXnLewCBV10oxyLptmwrZ0HKUoqlrIbMEoyRDEK3slWIVQqcY78UOOVjnjsG_LTAm_eIXweWTmksplVQ5PLv42tUFH2PAQY_Bvpqw1Az0qmu97lrnrvVP17rKkFhDcVw9juEv-h_qGwpugyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555656242</pqid></control><display><type>article</type><title>Existence and Asymptotic Behavior of Solutions for Degenerate Nonlinear Kirchhoff Strings with Variable-Exponent Nonlinearities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abita, Rahmoune</creator><creatorcontrib>Abita, Rahmoune</creatorcontrib><description>In this paper, we investigate the existence of a local solution in time and discuss the exponential asymptotic behavior to a weakly damped wave equation involving the variable-exponents u t t − M ∇ u t 2 Δ u + ∫ 0 t g t − s Δ u s d s + γ 1 u t + u t k x − 1 u t = u p x − 1 u in Ω × ℝ + with simply supported boundary condition, where Ω is a bounded domain of ℝ n , g &gt; 0 is a memory kernel that decays exponentially, and M ( s ) is a locally Lipschitz function. This kind of problem without the memory term when k (.) and p (.) are constants models viscoelastic Kirchhoff equation.</description><identifier>ISSN: 0251-4184</identifier><identifier>EISSN: 2315-4144</identifier><identifier>DOI: 10.1007/s40306-021-00420-7</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Asymptotic properties ; Boundary conditions ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Wave equations</subject><ispartof>Acta mathematica vietnamica, 2021, Vol.46 (3), p.613-643</ispartof><rights>Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2021</rights><rights>Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5ad393242290f56cb53f58bb97e1fb2e5398835fb20a651e03b5d6617e0c612d3</citedby><cites>FETCH-LOGICAL-c319t-5ad393242290f56cb53f58bb97e1fb2e5398835fb20a651e03b5d6617e0c612d3</cites><orcidid>0000-0003-2384-2668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40306-021-00420-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40306-021-00420-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Abita, Rahmoune</creatorcontrib><title>Existence and Asymptotic Behavior of Solutions for Degenerate Nonlinear Kirchhoff Strings with Variable-Exponent Nonlinearities</title><title>Acta mathematica vietnamica</title><addtitle>Acta Math Vietnam</addtitle><description>In this paper, we investigate the existence of a local solution in time and discuss the exponential asymptotic behavior to a weakly damped wave equation involving the variable-exponents u t t − M ∇ u t 2 Δ u + ∫ 0 t g t − s Δ u s d s + γ 1 u t + u t k x − 1 u t = u p x − 1 u in Ω × ℝ + with simply supported boundary condition, where Ω is a bounded domain of ℝ n , g &gt; 0 is a memory kernel that decays exponentially, and M ( s ) is a locally Lipschitz function. This kind of problem without the memory term when k (.) and p (.) are constants models viscoelastic Kirchhoff equation.</description><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Wave equations</subject><issn>0251-4184</issn><issn>2315-4144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhC0EEifgD1BZog6s7dhJSh7HQyAoeLSWk2w4o8MOtg-4ir-Oj0Oio9rRar5Z7RCyz-CQAVRHsQQBqgDOCoCSQ1FtkAkXTBYlK8tNMgEuWdZ1uU32YrQtMFEpqGo5IV_TTxsTug6pcT09jsvXMflkO3qCM_NufaB-oPd-vkjWu0iHvDjDZ3QYTEJ6693cOjSBXtvQzWZ-yOYUrHuO9MOmGX0ywZp2jsX0c_QOXfpDbLIYd8nWYOYR937nDnk8nz6cXhY3dxdXp8c3RSdYkwppetEIXnLewCBV10oxyLptmwrZ0HKUoqlrIbMEoyRDEK3slWIVQqcY78UOOVjnjsG_LTAm_eIXweWTmksplVQ5PLv42tUFH2PAQY_Bvpqw1Az0qmu97lrnrvVP17rKkFhDcVw9juEv-h_qGwpugyM</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Abita, Rahmoune</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2384-2668</orcidid></search><sort><creationdate>2021</creationdate><title>Existence and Asymptotic Behavior of Solutions for Degenerate Nonlinear Kirchhoff Strings with Variable-Exponent Nonlinearities</title><author>Abita, Rahmoune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5ad393242290f56cb53f58bb97e1fb2e5398835fb20a651e03b5d6617e0c612d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abita, Rahmoune</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica vietnamica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abita, Rahmoune</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Asymptotic Behavior of Solutions for Degenerate Nonlinear Kirchhoff Strings with Variable-Exponent Nonlinearities</atitle><jtitle>Acta mathematica vietnamica</jtitle><stitle>Acta Math Vietnam</stitle><date>2021</date><risdate>2021</risdate><volume>46</volume><issue>3</issue><spage>613</spage><epage>643</epage><pages>613-643</pages><issn>0251-4184</issn><eissn>2315-4144</eissn><abstract>In this paper, we investigate the existence of a local solution in time and discuss the exponential asymptotic behavior to a weakly damped wave equation involving the variable-exponents u t t − M ∇ u t 2 Δ u + ∫ 0 t g t − s Δ u s d s + γ 1 u t + u t k x − 1 u t = u p x − 1 u in Ω × ℝ + with simply supported boundary condition, where Ω is a bounded domain of ℝ n , g &gt; 0 is a memory kernel that decays exponentially, and M ( s ) is a locally Lipschitz function. This kind of problem without the memory term when k (.) and p (.) are constants models viscoelastic Kirchhoff equation.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40306-021-00420-7</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-2384-2668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0251-4184
ispartof Acta mathematica vietnamica, 2021, Vol.46 (3), p.613-643
issn 0251-4184
2315-4144
language eng
recordid cdi_proquest_journals_2555656242
source SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Boundary conditions
Mathematics
Mathematics and Statistics
Nonlinearity
Wave equations
title Existence and Asymptotic Behavior of Solutions for Degenerate Nonlinear Kirchhoff Strings with Variable-Exponent Nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Asymptotic%20Behavior%20of%20Solutions%20for%20Degenerate%20Nonlinear%20Kirchhoff%20Strings%20with%20Variable-Exponent%20Nonlinearities&rft.jtitle=Acta%20mathematica%20vietnamica&rft.au=Abita,%20Rahmoune&rft.date=2021&rft.volume=46&rft.issue=3&rft.spage=613&rft.epage=643&rft.pages=613-643&rft.issn=0251-4184&rft.eissn=2315-4144&rft_id=info:doi/10.1007/s40306-021-00420-7&rft_dat=%3Cproquest_cross%3E2555656242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555656242&rft_id=info:pmid/&rfr_iscdi=true