An Enhanced Symbiotic Organism Search Algorithm (ESOS) for the Sizing Design of Pin Connected Structures
The symbiotic organism search (SOS) algorithm is a strong metaheuristic search engine with a great explorative capability which enables it to search for global optima efficiently. Nevertheless, its exploitive ability is less profound leading to a relatively low rate of convergence. In the current pa...
Gespeichert in:
Veröffentlicht in: | Iranian journal of science and technology. Transactions of civil engineering 2021-09, Vol.45 (3), p.1371-1396 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1396 |
---|---|
container_issue | 3 |
container_start_page | 1371 |
container_title | Iranian journal of science and technology. Transactions of civil engineering |
container_volume | 45 |
creator | Makiabadi, Mohammad H. Maheri, Mahmoud R. |
description | The symbiotic organism search (SOS) algorithm is a strong metaheuristic search engine with a great explorative capability which enables it to search for global optima efficiently. Nevertheless, its exploitive ability is less profound leading to a relatively low rate of convergence. In the current paper, an enhanced symbiotic organism search (ESOS) algorithm with the aim of improving the exploitive capability of the SOS algorithm is presented. The enhancements are done in the commensalism and mutualism phases of the algorithm. In the current study, a multi-ecosystem mechanism is also employed. The presented ESOS algorithm is used along with two different constraint handling methods, namely mapping strategy (MS) and penalty function (PF). This leads to two variants of the ESOS, termed as ESOS-MS and ESOS-PF. The two presented ESOS variants are utilized to optimize the weight of four benchmark truss structures. The results are compared with the optimal designs reported in the literature. The results demonstrate that the proposed ESOS variants not only can find better solutions compared to the other algorithms, but also are faster in doing so. Moreover, of the two presented ESOS variants, the ESOS-MS variant performs much better than the ESOS-PF variant. |
doi_str_mv | 10.1007/s40996-020-00471-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555655110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555655110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-331f022a8419d76355010b554737ce844c5cd2c18c337aaa7d9fccf903081e003</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CyxAJD4GzH-RirUj6kSkUKzJbrOImrxi52MpRfT0KQ2Jjuhvd57_QgdE3gngCkDyGGPE8ioBABxCmJ4AzNKEviiGQxOx92SrMoIQlcokUIewAgkDJIshlqlhavbSOt0iUuTu3OuM4ovPW1tCa0uNDSqwYvD7XzpmtafLsutsUdrpzHXaNxYb6MrfGjDqa22FX4zVi8ctZq1Y2Nne9V13sdrtBFJQ9BL37nHH08rd9XL9Fm-_y6Wm4ixUjeRYyRCiiVWUzyMk0Y58OvO87jlKVKZ3GsuCqpIpliLJVSpmVeKVXlwCAjGoDN0c3Ue_Tus9ehE3vXezucFJRznnBOyJiiU0p5F4LXlTh600p_EgTEKFVMUsUgVfxIFSPEJigMYVtr_1f9D_UNXkp33w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555655110</pqid></control><display><type>article</type><title>An Enhanced Symbiotic Organism Search Algorithm (ESOS) for the Sizing Design of Pin Connected Structures</title><source>Springer Nature - Complete Springer Journals</source><creator>Makiabadi, Mohammad H. ; Maheri, Mahmoud R.</creator><creatorcontrib>Makiabadi, Mohammad H. ; Maheri, Mahmoud R.</creatorcontrib><description>The symbiotic organism search (SOS) algorithm is a strong metaheuristic search engine with a great explorative capability which enables it to search for global optima efficiently. Nevertheless, its exploitive ability is less profound leading to a relatively low rate of convergence. In the current paper, an enhanced symbiotic organism search (ESOS) algorithm with the aim of improving the exploitive capability of the SOS algorithm is presented. The enhancements are done in the commensalism and mutualism phases of the algorithm. In the current study, a multi-ecosystem mechanism is also employed. The presented ESOS algorithm is used along with two different constraint handling methods, namely mapping strategy (MS) and penalty function (PF). This leads to two variants of the ESOS, termed as ESOS-MS and ESOS-PF. The two presented ESOS variants are utilized to optimize the weight of four benchmark truss structures. The results are compared with the optimal designs reported in the literature. The results demonstrate that the proposed ESOS variants not only can find better solutions compared to the other algorithms, but also are faster in doing so. Moreover, of the two presented ESOS variants, the ESOS-MS variant performs much better than the ESOS-PF variant.</description><identifier>ISSN: 2228-6160</identifier><identifier>EISSN: 2364-1843</identifier><identifier>DOI: 10.1007/s40996-020-00471-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Civil Engineering ; Commensalism ; Engineering ; Heuristic methods ; Mutualism ; Optimization ; Organisms ; Penalty function ; Research Paper ; Search algorithms ; Search engines</subject><ispartof>Iranian journal of science and technology. Transactions of civil engineering, 2021-09, Vol.45 (3), p.1371-1396</ispartof><rights>Shiraz University 2020</rights><rights>Shiraz University 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-331f022a8419d76355010b554737ce844c5cd2c18c337aaa7d9fccf903081e003</citedby><cites>FETCH-LOGICAL-c319t-331f022a8419d76355010b554737ce844c5cd2c18c337aaa7d9fccf903081e003</cites><orcidid>0000-0002-5502-059X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40996-020-00471-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40996-020-00471-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Makiabadi, Mohammad H.</creatorcontrib><creatorcontrib>Maheri, Mahmoud R.</creatorcontrib><title>An Enhanced Symbiotic Organism Search Algorithm (ESOS) for the Sizing Design of Pin Connected Structures</title><title>Iranian journal of science and technology. Transactions of civil engineering</title><addtitle>Iran J Sci Technol Trans Civ Eng</addtitle><description>The symbiotic organism search (SOS) algorithm is a strong metaheuristic search engine with a great explorative capability which enables it to search for global optima efficiently. Nevertheless, its exploitive ability is less profound leading to a relatively low rate of convergence. In the current paper, an enhanced symbiotic organism search (ESOS) algorithm with the aim of improving the exploitive capability of the SOS algorithm is presented. The enhancements are done in the commensalism and mutualism phases of the algorithm. In the current study, a multi-ecosystem mechanism is also employed. The presented ESOS algorithm is used along with two different constraint handling methods, namely mapping strategy (MS) and penalty function (PF). This leads to two variants of the ESOS, termed as ESOS-MS and ESOS-PF. The two presented ESOS variants are utilized to optimize the weight of four benchmark truss structures. The results are compared with the optimal designs reported in the literature. The results demonstrate that the proposed ESOS variants not only can find better solutions compared to the other algorithms, but also are faster in doing so. Moreover, of the two presented ESOS variants, the ESOS-MS variant performs much better than the ESOS-PF variant.</description><subject>Algorithms</subject><subject>Civil Engineering</subject><subject>Commensalism</subject><subject>Engineering</subject><subject>Heuristic methods</subject><subject>Mutualism</subject><subject>Optimization</subject><subject>Organisms</subject><subject>Penalty function</subject><subject>Research Paper</subject><subject>Search algorithms</subject><subject>Search engines</subject><issn>2228-6160</issn><issn>2364-1843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElXpH2CyxAJD4GzH-RirUj6kSkUKzJbrOImrxi52MpRfT0KQ2Jjuhvd57_QgdE3gngCkDyGGPE8ioBABxCmJ4AzNKEviiGQxOx92SrMoIQlcokUIewAgkDJIshlqlhavbSOt0iUuTu3OuM4ovPW1tCa0uNDSqwYvD7XzpmtafLsutsUdrpzHXaNxYb6MrfGjDqa22FX4zVi8ctZq1Y2Nne9V13sdrtBFJQ9BL37nHH08rd9XL9Fm-_y6Wm4ixUjeRYyRCiiVWUzyMk0Y58OvO87jlKVKZ3GsuCqpIpliLJVSpmVeKVXlwCAjGoDN0c3Ue_Tus9ehE3vXezucFJRznnBOyJiiU0p5F4LXlTh600p_EgTEKFVMUsUgVfxIFSPEJigMYVtr_1f9D_UNXkp33w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Makiabadi, Mohammad H.</creator><creator>Maheri, Mahmoud R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5502-059X</orcidid></search><sort><creationdate>20210901</creationdate><title>An Enhanced Symbiotic Organism Search Algorithm (ESOS) for the Sizing Design of Pin Connected Structures</title><author>Makiabadi, Mohammad H. ; Maheri, Mahmoud R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-331f022a8419d76355010b554737ce844c5cd2c18c337aaa7d9fccf903081e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Civil Engineering</topic><topic>Commensalism</topic><topic>Engineering</topic><topic>Heuristic methods</topic><topic>Mutualism</topic><topic>Optimization</topic><topic>Organisms</topic><topic>Penalty function</topic><topic>Research Paper</topic><topic>Search algorithms</topic><topic>Search engines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makiabadi, Mohammad H.</creatorcontrib><creatorcontrib>Maheri, Mahmoud R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Iranian journal of science and technology. Transactions of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makiabadi, Mohammad H.</au><au>Maheri, Mahmoud R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Symbiotic Organism Search Algorithm (ESOS) for the Sizing Design of Pin Connected Structures</atitle><jtitle>Iranian journal of science and technology. Transactions of civil engineering</jtitle><stitle>Iran J Sci Technol Trans Civ Eng</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>45</volume><issue>3</issue><spage>1371</spage><epage>1396</epage><pages>1371-1396</pages><issn>2228-6160</issn><eissn>2364-1843</eissn><abstract>The symbiotic organism search (SOS) algorithm is a strong metaheuristic search engine with a great explorative capability which enables it to search for global optima efficiently. Nevertheless, its exploitive ability is less profound leading to a relatively low rate of convergence. In the current paper, an enhanced symbiotic organism search (ESOS) algorithm with the aim of improving the exploitive capability of the SOS algorithm is presented. The enhancements are done in the commensalism and mutualism phases of the algorithm. In the current study, a multi-ecosystem mechanism is also employed. The presented ESOS algorithm is used along with two different constraint handling methods, namely mapping strategy (MS) and penalty function (PF). This leads to two variants of the ESOS, termed as ESOS-MS and ESOS-PF. The two presented ESOS variants are utilized to optimize the weight of four benchmark truss structures. The results are compared with the optimal designs reported in the literature. The results demonstrate that the proposed ESOS variants not only can find better solutions compared to the other algorithms, but also are faster in doing so. Moreover, of the two presented ESOS variants, the ESOS-MS variant performs much better than the ESOS-PF variant.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40996-020-00471-0</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5502-059X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2228-6160 |
ispartof | Iranian journal of science and technology. Transactions of civil engineering, 2021-09, Vol.45 (3), p.1371-1396 |
issn | 2228-6160 2364-1843 |
language | eng |
recordid | cdi_proquest_journals_2555655110 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Civil Engineering Commensalism Engineering Heuristic methods Mutualism Optimization Organisms Penalty function Research Paper Search algorithms Search engines |
title | An Enhanced Symbiotic Organism Search Algorithm (ESOS) for the Sizing Design of Pin Connected Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Symbiotic%20Organism%20Search%20Algorithm%20(ESOS)%20for%20the%20Sizing%20Design%20of%20Pin%20Connected%20Structures&rft.jtitle=Iranian%20journal%20of%20science%20and%20technology.%20Transactions%20of%20civil%20engineering&rft.au=Makiabadi,%20Mohammad%20H.&rft.date=2021-09-01&rft.volume=45&rft.issue=3&rft.spage=1371&rft.epage=1396&rft.pages=1371-1396&rft.issn=2228-6160&rft.eissn=2364-1843&rft_id=info:doi/10.1007/s40996-020-00471-0&rft_dat=%3Cproquest_cross%3E2555655110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555655110&rft_id=info:pmid/&rfr_iscdi=true |