Neural Video Compression using GANs for Detail Synthesis and Propagation

We present the first neural video compression method based on generative adversarial networks (GANs). Our approach significantly outperforms previous neural and non-neural video compression methods in a user study, setting a new state-of-the-art in visual quality for neural methods. We show that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Mentzer, Fabian, Agustsson, Eirikur, Ballé, Johannes, Minnen, David, Johnston, Nick, Toderici, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mentzer, Fabian
Agustsson, Eirikur
Ballé, Johannes
Minnen, David
Johnston, Nick
Toderici, George
description We present the first neural video compression method based on generative adversarial networks (GANs). Our approach significantly outperforms previous neural and non-neural video compression methods in a user study, setting a new state-of-the-art in visual quality for neural methods. We show that the GAN loss is crucial to obtain this high visual quality. Two components make the GAN loss effective: we i) synthesize detail by conditioning the generator on a latent extracted from the warped previous reconstruction to then ii) propagate this detail with high-quality flow. We find that user studies are required to compare methods, i.e., none of our quantitative metrics were able to predict all studies. We present the network design choices in detail, and ablate them with user studies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2555489204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555489204</sourcerecordid><originalsourceid>FETCH-proquest_journals_25554892043</originalsourceid><addsrcrecordid>eNqNjbsKwjAUQIMgWLT_cMG5EJNW6yj10akIimsJNK0pNbfmJoN_bwc_wOkM58CZsUhIuUnyVIgFi4l6zrnY7kSWyYiVlQ5ODfAwjUYo8DU6TWTQQiBjO7gcKoIWHRy1V2aA28f6pyZDoGwDV4ej6pSf-hWbt2ogHf-4ZOvz6V6UyejwHTT5usfg7KTq6Zyl-V7wVP5XfQEWpzu_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555489204</pqid></control><display><type>article</type><title>Neural Video Compression using GANs for Detail Synthesis and Propagation</title><source>Free E- Journals</source><creator>Mentzer, Fabian ; Agustsson, Eirikur ; Ballé, Johannes ; Minnen, David ; Johnston, Nick ; Toderici, George</creator><creatorcontrib>Mentzer, Fabian ; Agustsson, Eirikur ; Ballé, Johannes ; Minnen, David ; Johnston, Nick ; Toderici, George</creatorcontrib><description>We present the first neural video compression method based on generative adversarial networks (GANs). Our approach significantly outperforms previous neural and non-neural video compression methods in a user study, setting a new state-of-the-art in visual quality for neural methods. We show that the GAN loss is crucial to obtain this high visual quality. Two components make the GAN loss effective: we i) synthesize detail by conditioning the generator on a latent extracted from the warped previous reconstruction to then ii) propagate this detail with high-quality flow. We find that user studies are required to compare methods, i.e., none of our quantitative metrics were able to predict all studies. We present the network design choices in detail, and ablate them with user studies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Compression tests ; Generative adversarial networks ; Network design ; Spectrum analysis ; Video compression</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mentzer, Fabian</creatorcontrib><creatorcontrib>Agustsson, Eirikur</creatorcontrib><creatorcontrib>Ballé, Johannes</creatorcontrib><creatorcontrib>Minnen, David</creatorcontrib><creatorcontrib>Johnston, Nick</creatorcontrib><creatorcontrib>Toderici, George</creatorcontrib><title>Neural Video Compression using GANs for Detail Synthesis and Propagation</title><title>arXiv.org</title><description>We present the first neural video compression method based on generative adversarial networks (GANs). Our approach significantly outperforms previous neural and non-neural video compression methods in a user study, setting a new state-of-the-art in visual quality for neural methods. We show that the GAN loss is crucial to obtain this high visual quality. Two components make the GAN loss effective: we i) synthesize detail by conditioning the generator on a latent extracted from the warped previous reconstruction to then ii) propagate this detail with high-quality flow. We find that user studies are required to compare methods, i.e., none of our quantitative metrics were able to predict all studies. We present the network design choices in detail, and ablate them with user studies.</description><subject>Compression tests</subject><subject>Generative adversarial networks</subject><subject>Network design</subject><subject>Spectrum analysis</subject><subject>Video compression</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjbsKwjAUQIMgWLT_cMG5EJNW6yj10akIimsJNK0pNbfmJoN_bwc_wOkM58CZsUhIuUnyVIgFi4l6zrnY7kSWyYiVlQ5ODfAwjUYo8DU6TWTQQiBjO7gcKoIWHRy1V2aA28f6pyZDoGwDV4ej6pSf-hWbt2ogHf-4ZOvz6V6UyejwHTT5usfg7KTq6Zyl-V7wVP5XfQEWpzu_</recordid><startdate>20220712</startdate><enddate>20220712</enddate><creator>Mentzer, Fabian</creator><creator>Agustsson, Eirikur</creator><creator>Ballé, Johannes</creator><creator>Minnen, David</creator><creator>Johnston, Nick</creator><creator>Toderici, George</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220712</creationdate><title>Neural Video Compression using GANs for Detail Synthesis and Propagation</title><author>Mentzer, Fabian ; Agustsson, Eirikur ; Ballé, Johannes ; Minnen, David ; Johnston, Nick ; Toderici, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25554892043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compression tests</topic><topic>Generative adversarial networks</topic><topic>Network design</topic><topic>Spectrum analysis</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Mentzer, Fabian</creatorcontrib><creatorcontrib>Agustsson, Eirikur</creatorcontrib><creatorcontrib>Ballé, Johannes</creatorcontrib><creatorcontrib>Minnen, David</creatorcontrib><creatorcontrib>Johnston, Nick</creatorcontrib><creatorcontrib>Toderici, George</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mentzer, Fabian</au><au>Agustsson, Eirikur</au><au>Ballé, Johannes</au><au>Minnen, David</au><au>Johnston, Nick</au><au>Toderici, George</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Neural Video Compression using GANs for Detail Synthesis and Propagation</atitle><jtitle>arXiv.org</jtitle><date>2022-07-12</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present the first neural video compression method based on generative adversarial networks (GANs). Our approach significantly outperforms previous neural and non-neural video compression methods in a user study, setting a new state-of-the-art in visual quality for neural methods. We show that the GAN loss is crucial to obtain this high visual quality. Two components make the GAN loss effective: we i) synthesize detail by conditioning the generator on a latent extracted from the warped previous reconstruction to then ii) propagate this detail with high-quality flow. We find that user studies are required to compare methods, i.e., none of our quantitative metrics were able to predict all studies. We present the network design choices in detail, and ablate them with user studies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2555489204
source Free E- Journals
subjects Compression tests
Generative adversarial networks
Network design
Spectrum analysis
Video compression
title Neural Video Compression using GANs for Detail Synthesis and Propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Neural%20Video%20Compression%20using%20GANs%20for%20Detail%20Synthesis%20and%20Propagation&rft.jtitle=arXiv.org&rft.au=Mentzer,%20Fabian&rft.date=2022-07-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2555489204%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555489204&rft_id=info:pmid/&rfr_iscdi=true