Improvement of the setting method of back pressure setting value of direct air cooling system

Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2020-03, Vol.467 (1), p.12003
Hauptverfasser: Bai, Jianyun, Ren, Qi, Meng, Xinyu, Yin, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12003
container_title IOP conference series. Earth and environmental science
container_volume 467
creator Bai, Jianyun
Ren, Qi
Meng, Xinyu
Yin, Jiang
description Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field data calculation, particle swarm optimization (PSO) is used to optimize the modeling of BP neural network. The results show that, compared with the conventional BP model, the back pressure setting value predicted by the optimized model is more accurate, the model precision is higher, and it is more suitable for industrial field application. This method also provides some reference for the modeling of other objects in the process of thermal production.
doi_str_mv 10.1088/1755-1315/467/1/012003
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2555418319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555418319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-2559d4bce2bcfe026dba78d940b382795510f2312ac22ef096ad11c5c09f58613</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObkzT9uJQxdTDwQr2UkKaJ61yXmqSD_XtbKhuC4FVC3ue8hzwIXQO5A5LnMWScR8CAx0maxRAToISwEzQ5BKeHO8nO0YX3a0LSLGHFBL0vmtbZnW70NmBrcFhp7HUI9fYDNzqsbDW8llJ94tZp7zt3zHdy0-khrmqnVcCydlhZuxkyv_dBN5fozMiN11c_5xS9PcxfZ0_R8vlxMbtfRorxJESU86JKSqVpqYwmNK1KmeVVkZCS5TQrOAdiKAMqFaXakCKVFYDiihSG5ymwKboZe_u_fHXaB7G2ndv2K0XfzRPIGRQ9lY6UctZ7p41oXd1ItxdAxKBSDJbEYEz0KgWIUWU_eDsO1rY9Ns_nL78w0VamR-kf6D_933ebgqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555418319</pqid></control><display><type>article</type><title>Improvement of the setting method of back pressure setting value of direct air cooling system</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics IOPscience extra</source><creator>Bai, Jianyun ; Ren, Qi ; Meng, Xinyu ; Yin, Jiang</creator><creatorcontrib>Bai, Jianyun ; Ren, Qi ; Meng, Xinyu ; Yin, Jiang</creatorcontrib><description>Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field data calculation, particle swarm optimization (PSO) is used to optimize the modeling of BP neural network. The results show that, compared with the conventional BP model, the back pressure setting value predicted by the optimized model is more accurate, the model precision is higher, and it is more suitable for industrial field application. This method also provides some reference for the modeling of other objects in the process of thermal production.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/467/1/012003</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air cooling ; Back propagation networks ; Cooling systems ; Modelling ; Neural networks ; Particle swarm optimization ; Pressure</subject><ispartof>IOP conference series. Earth and environmental science, 2020-03, Vol.467 (1), p.12003</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/467/1/012003/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Bai, Jianyun</creatorcontrib><creatorcontrib>Ren, Qi</creatorcontrib><creatorcontrib>Meng, Xinyu</creatorcontrib><creatorcontrib>Yin, Jiang</creatorcontrib><title>Improvement of the setting method of back pressure setting value of direct air cooling system</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field data calculation, particle swarm optimization (PSO) is used to optimize the modeling of BP neural network. The results show that, compared with the conventional BP model, the back pressure setting value predicted by the optimized model is more accurate, the model precision is higher, and it is more suitable for industrial field application. This method also provides some reference for the modeling of other objects in the process of thermal production.</description><subject>Air cooling</subject><subject>Back propagation networks</subject><subject>Cooling systems</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Pressure</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObkzT9uJQxdTDwQr2UkKaJ61yXmqSD_XtbKhuC4FVC3ue8hzwIXQO5A5LnMWScR8CAx0maxRAToISwEzQ5BKeHO8nO0YX3a0LSLGHFBL0vmtbZnW70NmBrcFhp7HUI9fYDNzqsbDW8llJ94tZp7zt3zHdy0-khrmqnVcCydlhZuxkyv_dBN5fozMiN11c_5xS9PcxfZ0_R8vlxMbtfRorxJESU86JKSqVpqYwmNK1KmeVVkZCS5TQrOAdiKAMqFaXakCKVFYDiihSG5ymwKboZe_u_fHXaB7G2ndv2K0XfzRPIGRQ9lY6UctZ7p41oXd1ItxdAxKBSDJbEYEz0KgWIUWU_eDsO1rY9Ns_nL78w0VamR-kf6D_933ebgqw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Bai, Jianyun</creator><creator>Ren, Qi</creator><creator>Meng, Xinyu</creator><creator>Yin, Jiang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20200301</creationdate><title>Improvement of the setting method of back pressure setting value of direct air cooling system</title><author>Bai, Jianyun ; Ren, Qi ; Meng, Xinyu ; Yin, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-2559d4bce2bcfe026dba78d940b382795510f2312ac22ef096ad11c5c09f58613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air cooling</topic><topic>Back propagation networks</topic><topic>Cooling systems</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Jianyun</creatorcontrib><creatorcontrib>Ren, Qi</creatorcontrib><creatorcontrib>Meng, Xinyu</creatorcontrib><creatorcontrib>Yin, Jiang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Jianyun</au><au>Ren, Qi</au><au>Meng, Xinyu</au><au>Yin, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of the setting method of back pressure setting value of direct air cooling system</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>467</volume><issue>1</issue><spage>12003</spage><pages>12003-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field data calculation, particle swarm optimization (PSO) is used to optimize the modeling of BP neural network. The results show that, compared with the conventional BP model, the back pressure setting value predicted by the optimized model is more accurate, the model precision is higher, and it is more suitable for industrial field application. This method also provides some reference for the modeling of other objects in the process of thermal production.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/467/1/012003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2020-03, Vol.467 (1), p.12003
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2555418319
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics IOPscience extra
subjects Air cooling
Back propagation networks
Cooling systems
Modelling
Neural networks
Particle swarm optimization
Pressure
title Improvement of the setting method of back pressure setting value of direct air cooling system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20the%20setting%20method%20of%20back%20pressure%20setting%20value%20of%20direct%20air%20cooling%20system&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Bai,%20Jianyun&rft.date=2020-03-01&rft.volume=467&rft.issue=1&rft.spage=12003&rft.pages=12003-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/467/1/012003&rft_dat=%3Cproquest_iop_j%3E2555418319%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555418319&rft_id=info:pmid/&rfr_iscdi=true