Improvement of the setting method of back pressure setting value of direct air cooling system
Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field d...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2020-03, Vol.467 (1), p.12003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12003 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 467 |
creator | Bai, Jianyun Ren, Qi Meng, Xinyu Yin, Jiang |
description | Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field data calculation, particle swarm optimization (PSO) is used to optimize the modeling of BP neural network. The results show that, compared with the conventional BP model, the back pressure setting value predicted by the optimized model is more accurate, the model precision is higher, and it is more suitable for industrial field application. This method also provides some reference for the modeling of other objects in the process of thermal production. |
doi_str_mv | 10.1088/1755-1315/467/1/012003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2555418319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555418319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-2559d4bce2bcfe026dba78d940b382795510f2312ac22ef096ad11c5c09f58613</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObkzT9uJQxdTDwQr2UkKaJ61yXmqSD_XtbKhuC4FVC3ue8hzwIXQO5A5LnMWScR8CAx0maxRAToISwEzQ5BKeHO8nO0YX3a0LSLGHFBL0vmtbZnW70NmBrcFhp7HUI9fYDNzqsbDW8llJ94tZp7zt3zHdy0-khrmqnVcCydlhZuxkyv_dBN5fozMiN11c_5xS9PcxfZ0_R8vlxMbtfRorxJESU86JKSqVpqYwmNK1KmeVVkZCS5TQrOAdiKAMqFaXakCKVFYDiihSG5ymwKboZe_u_fHXaB7G2ndv2K0XfzRPIGRQ9lY6UctZ7p41oXd1ItxdAxKBSDJbEYEz0KgWIUWU_eDsO1rY9Ns_nL78w0VamR-kf6D_933ebgqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555418319</pqid></control><display><type>article</type><title>Improvement of the setting method of back pressure setting value of direct air cooling system</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics IOPscience extra</source><creator>Bai, Jianyun ; Ren, Qi ; Meng, Xinyu ; Yin, Jiang</creator><creatorcontrib>Bai, Jianyun ; Ren, Qi ; Meng, Xinyu ; Yin, Jiang</creatorcontrib><description>Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field data calculation, particle swarm optimization (PSO) is used to optimize the modeling of BP neural network. The results show that, compared with the conventional BP model, the back pressure setting value predicted by the optimized model is more accurate, the model precision is higher, and it is more suitable for industrial field application. This method also provides some reference for the modeling of other objects in the process of thermal production.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/467/1/012003</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air cooling ; Back propagation networks ; Cooling systems ; Modelling ; Neural networks ; Particle swarm optimization ; Pressure</subject><ispartof>IOP conference series. Earth and environmental science, 2020-03, Vol.467 (1), p.12003</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/467/1/012003/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Bai, Jianyun</creatorcontrib><creatorcontrib>Ren, Qi</creatorcontrib><creatorcontrib>Meng, Xinyu</creatorcontrib><creatorcontrib>Yin, Jiang</creatorcontrib><title>Improvement of the setting method of back pressure setting value of direct air cooling system</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field data calculation, particle swarm optimization (PSO) is used to optimize the modeling of BP neural network. The results show that, compared with the conventional BP model, the back pressure setting value predicted by the optimized model is more accurate, the model precision is higher, and it is more suitable for industrial field application. This method also provides some reference for the modeling of other objects in the process of thermal production.</description><subject>Air cooling</subject><subject>Back propagation networks</subject><subject>Cooling systems</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Pressure</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObkzT9uJQxdTDwQr2UkKaJ61yXmqSD_XtbKhuC4FVC3ue8hzwIXQO5A5LnMWScR8CAx0maxRAToISwEzQ5BKeHO8nO0YX3a0LSLGHFBL0vmtbZnW70NmBrcFhp7HUI9fYDNzqsbDW8llJ94tZp7zt3zHdy0-khrmqnVcCydlhZuxkyv_dBN5fozMiN11c_5xS9PcxfZ0_R8vlxMbtfRorxJESU86JKSqVpqYwmNK1KmeVVkZCS5TQrOAdiKAMqFaXakCKVFYDiihSG5ymwKboZe_u_fHXaB7G2ndv2K0XfzRPIGRQ9lY6UctZ7p41oXd1ItxdAxKBSDJbEYEz0KgWIUWU_eDsO1rY9Ns_nL78w0VamR-kf6D_933ebgqw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Bai, Jianyun</creator><creator>Ren, Qi</creator><creator>Meng, Xinyu</creator><creator>Yin, Jiang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20200301</creationdate><title>Improvement of the setting method of back pressure setting value of direct air cooling system</title><author>Bai, Jianyun ; Ren, Qi ; Meng, Xinyu ; Yin, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-2559d4bce2bcfe026dba78d940b382795510f2312ac22ef096ad11c5c09f58613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air cooling</topic><topic>Back propagation networks</topic><topic>Cooling systems</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Jianyun</creatorcontrib><creatorcontrib>Ren, Qi</creatorcontrib><creatorcontrib>Meng, Xinyu</creatorcontrib><creatorcontrib>Yin, Jiang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Jianyun</au><au>Ren, Qi</au><au>Meng, Xinyu</au><au>Yin, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of the setting method of back pressure setting value of direct air cooling system</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>467</volume><issue>1</issue><spage>12003</spage><pages>12003-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Because the setting method of back pressure of direct air cooling system is not reasonable, the fluctuation range of back pressure and load change are larger when the unit is peak shaving, which reduces the economic efficiency of the unit. In this paper, based on the optimal back pressure of field data calculation, particle swarm optimization (PSO) is used to optimize the modeling of BP neural network. The results show that, compared with the conventional BP model, the back pressure setting value predicted by the optimized model is more accurate, the model precision is higher, and it is more suitable for industrial field application. This method also provides some reference for the modeling of other objects in the process of thermal production.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/467/1/012003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2020-03, Vol.467 (1), p.12003 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2555418319 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics IOPscience extra |
subjects | Air cooling Back propagation networks Cooling systems Modelling Neural networks Particle swarm optimization Pressure |
title | Improvement of the setting method of back pressure setting value of direct air cooling system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20the%20setting%20method%20of%20back%20pressure%20setting%20value%20of%20direct%20air%20cooling%20system&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Bai,%20Jianyun&rft.date=2020-03-01&rft.volume=467&rft.issue=1&rft.spage=12003&rft.pages=12003-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/467/1/012003&rft_dat=%3Cproquest_iop_j%3E2555418319%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555418319&rft_id=info:pmid/&rfr_iscdi=true |